首页> 外文期刊>Signal Processing, IEEE Transactions on >Relaxing Tight Frame Condition in Parallel Proximal Methods for Signal Restoration
【24h】

Relaxing Tight Frame Condition in Parallel Proximal Methods for Signal Restoration

机译:并行近端信号恢复中紧框架条件的松弛

获取原文
获取原文并翻译 | 示例

摘要

A fruitful approach for solving signal deconvolution problems consists of resorting to a frame-based convex variational formulation. In this context, parallel proximal algorithms and related alternating direction methods of multipliers have become popular optimization techniques to approximate iteratively the desired solution. Until now, in most of these methods, either Lipschitz differentiability properties or tight frame representations were assumed. In this paper, it is shown that it is possible to relax these assumptions by considering a class of non-necessarily tight frame representations, thus offering the possibility of addressing a broader class of signal restoration problems. In particular, it is possible to use non-necessarily maximally decimated filter banks with perfect reconstruction, which are common tools in digital signal processing. The proposed approach allows us to solve both frame analysis and frame synthesis problems for various noise distributions. In our simulations, it is applied to the deconvolution of data corrupted with Poisson noise or Laplacian noise by using (non-tight) discrete dual-tree wavelet representations and filter bank structures.
机译:解决信号反卷积问题的有效方法包括诉诸基于帧的凸变分公式。在这种情况下,并行近端算法和相关的乘法器交替方向方法已成为流行的优化技术,以迭代方式逼近所需的解决方案。到目前为止,在大多数这些方法中,都假定使用Lipschitz微分性质或严格的框架表示。在本文中,表明可以通过考虑一类不必要的紧密帧表示来放宽这些假设,从而提供解决更广泛的信号恢复问题的可能性。特别地,可以使用具有完美重构的不必要地最大抽取的滤波器组,这是数字信号处理中的常用工具。所提出的方法使我们能够解决各种噪声分布的帧分析和帧合成问题。在我们的仿真中,通过使用(非紧)离散双树小波表示形式和滤波器组结构,将其应用于因泊松噪声或拉普拉斯噪声而损坏的数据的反卷积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号