首页> 外文期刊>Signal Processing, IEEE Transactions on >Superimposed Training-Based Channel Estimation and Data Detection for OFDM Amplify-and-Forward Cooperative Systems Under High Mobility
【24h】

Superimposed Training-Based Channel Estimation and Data Detection for OFDM Amplify-and-Forward Cooperative Systems Under High Mobility

机译:高移动性下OFDM放大转发协作系统基于训练的叠加信道估计和数据检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, joint channel estimation and data detection in orthogonal frequency division multiplexing (OFDM) amplify-and-forward (AF) cooperative systems under high mobility is investigated. Unlike previous works on cooperative systems in which a number of subcarriers are solely occupied by pilots, partial data-dependent superimposed training (PDDST) is considered here, thus preserving the spectral efficiency. First, a closed-form channel estimator is developed based on the least squares (LS) method with Tikhonov regularization and a corresponding data detection algorithm is proposed using the linear minimum mean square error (LMMSE) criterion. In the derived channel estimator, the unknown data is treated as part of the noise and the resulting data detection may not meet the required performance. To address this issue, an iterative method based on the variational inference approach is derived to improve performance. Simulation results show that the data detection performance of the proposed iterative algorithm initialized by the LMMSE data detector is close to the ideal case with perfect channel state information.
机译:本文研究了在高移动性下正交频分复用(OFDM)放大转发(AF)协作系统中的联合信道估计和数据检测。与先前的协作系统上的工作不同,在协作系统中,许多子载波仅由飞行员占用,此处考虑了部分数据相关的叠加训练(PDDST),从而保留了频谱效率。首先,基于带有Tikhonov正则化的最小二乘(LS)方法,开发了一种闭式信道估计器,并使用线性最小均方误差(LMMSE)准则提出了相应的数据检测算法。在派生的信道估计器中,未知数据被视为噪声的一部分,并且结果数据检测可能无法满足所需的性能。为了解决此问题,派生了基于变分推理方法的迭代方法以提高性能。仿真结果表明,由LMMSE数据检测器初始化的迭代算法的数据检测性能接近理想的信道状态信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号