首页> 外文期刊>IEEE Transactions on Signal Processing >Sparse Error Correction From Nonlinear Measurements With Applications in Bad Data Detection for Power Networks
【24h】

Sparse Error Correction From Nonlinear Measurements With Applications in Bad Data Detection for Power Networks

机译:非线性测量的稀疏误差校正及其在电网不良数据检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the problem of sparse error correction from general nonlinear measurements, which has applications in state estimation of electrical power networks, when bad data (outliers) are present. An iterative mixed $ell_1$ and $ell_2$ convex program is used to estimate the true state by locally linearizing the nonlinear measurements. In the special case when the measurements are linear, through using the almost Euclidean property for a linear subspace, we derive a new performance bound for the state estimation error under sparse bad data and additive observation noise. As a byproduct, in this paper we provide sharp bounds on the almost Euclidean property of a linear subspace, using the “escape-through-the-mesh” theorem from geometric functional analysis. When the measurements are nonlinear, we give conditions under which the solution of the iterative algorithm converges to the true state even though the locally linearized measurements may not be the actual nonlinear measurements. We are able to use a semidefinite program to verify the conditions for convergence of the proposed iterative sparse recovery algorithms from nonlinear measurements. We then numerically evaluate our iterative convex programming approach of performing bad data detections in nonlinear electrical power networks problems.
机译:在本文中,我们考虑了一般非线性测量中的稀疏误差校正问题,当存在不良数据(异常值)时,该问题已应用于电力网络的状态估计中。迭代混合的$ ell_1 $和$ ell_2 $凸程序用于通过局部线性化非线性测量值来估计真实状态。在测量为线性的特殊情况下,通过使用线性子空间的几乎欧几里得性质,我们为稀疏不良数据和附加观测噪声下的状态估计误差得出了新的性能界限。作为副产品,在本文中,我们使用了几何函数分析中的“越过网格”定理,为线性子空间的几乎欧几里得性质提供了清晰的界限。当测量为非线性时,即使局部线性化的测量值可能不是实际的非线性测量值,我们也给出了迭代算法的解收敛到真实状态的条件。我们能够使用半定程序来验证非线性测量中所提出的迭代稀疏恢复算法的收敛条件。然后,我们对非线性电力网络问题中执行不良数据检测的迭代凸规划方法进行数值评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号