首页> 外文期刊>IEEE Transactions on Signal Processing >Joint Sensor Selection and Multihop Routing for Distributed Estimation in Ad-hoc Wireless Sensor Networks
【24h】

Joint Sensor Selection and Multihop Routing for Distributed Estimation in Ad-hoc Wireless Sensor Networks

机译:Ad-hoc无线传感器网络中联合传感器选择和多跳路由以进行分布式估计

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of power-efficient distributed estimation of vector parameters related to localized phenomena so that both sensor selection and routing structure in a Wireless Sensor Network (WSN) are jointly optimized to obtain the best possible estimation performance at a given querying node, for a given total power budget. First, we formulate our problem as an optimization problem and show that it is an NP-Hard problem. Then, we design two algorithms: a Fixed-Tree Relaxation-Based Algorithm (FTRA) and a very efficient Iterative Distributed Algorithm (IDA) to optimize the sensor selection and routing structure. We also provide a lower bound for our optimization problem and show that our IDA provides a performance that is close to this bound, and it is substantially superior to the previous approaches presented in the literature. An important result from our work is the fact that because of the interplay between communication cost and estimation gain when fusing measurements from different sensors, the traditional Shortest Path Tree (SPT) routing structure, widely used in practice, is no longer optimal. To be specific, our routing structure provides a better trade-off between the overall power efficiency and estimation accuracy. Comparing to more conventional sensor selection and fixed routing algorithms, our proposed algorithms yield a significant amount of energy saving for the same estimation accuracy.
机译:本文考虑了与局部现象有关的矢量参数的高效节能分布式估计问题,因此,无线传感器网络(WSN)中的传感器选择和路由结构都得到了联合优化,以在给定的查询节点上获得最佳的估计性能,对于给定的总功率预算。首先,我们将问题公式化为优化问题,并证明它是NP-Hard问题。然后,我们设计了两种算法:一种基于固定树松弛算法(FTRA)和一种非常有效的迭代分布式算法(IDA),以优化传感器选择和路由结构。我们还为优化问题提供了一个下限,并表明我们的IDA提供了接近该上限的性能,并且明显优于文献中提出的先前方法。我们工作的一个重要结果是,由于在融合来自不同传感器的测量值时通信成本和估计增益之间存在相互作用,因此在实践中广泛使用的传统最短路径树(SPT)路由结构不再是最佳的。具体而言,我们的路由结构在总体功率效率和估计精度之间提供了更好的权衡。与更常规的传感器选择和固定路由算法相比,我们提出的算法在相同的估算精度下可节省大量能源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号