首页> 外文期刊>IEEE Transactions on Signal Processing >Cramér-Rao Lower Bounds on Covariance Matrix Estimation for Complex Elliptically Symmetric Distributions
【24h】

Cramér-Rao Lower Bounds on Covariance Matrix Estimation for Complex Elliptically Symmetric Distributions

机译:复杂椭圆对称分布的协方差矩阵估计的Cramér-Rao下界

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces the Cramér-Rao Lower Bounds (CRLBs) for the scatter matrix of Complex Elliptically Symmetric distributions and compares them to the performance of the (constrained-)ML estimators in the particular cases of complex Gaussian, Generalized Gaussian (GG) and $t$-distributed observation vectors. Numerical results confirm the goodness of the ML estimators and the advantage of taking into proper account a constraint on the matrix trace for small data size. The work is completed with the comparison with the performance of Tyler's matrix estimator that shows a very robust behavior in almost all the analyzed cases and with the CRLBs for the Complex Angular Elliptical distributions, whose Tyler's estimator is the ML one.
机译:本文介绍了复椭圆对称分布散点矩阵的Cramér-Rao下界(CRLB),并将其与(约束)ML估计量在复高斯,广义高斯(GG)和$的特殊情况下的性能进行比较。 t $分布的观察向量。数值结果证实了ML估计器的优越性,以及为小数据量适当考虑对矩阵迹线的约束的优势。通过与泰勒矩阵估计器的性能比较,该工作得以完成,泰勒矩阵估计器的性能在几乎所有分析情况下都非常稳健,并且与复角椭圆分布的CRLB进行比较,其泰勒估计器为ML。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号