首页> 外文期刊>IEEE Transactions on Signal Processing >Matrix-Based Algorithms for Constrained Least-Squares and Minimax Designs of 2-D Linear-Phase FIR Filters
【24h】

Matrix-Based Algorithms for Constrained Least-Squares and Minimax Designs of 2-D Linear-Phase FIR Filters

机译:二维线性相位FIR滤波器的约束最小二乘和Minimax设计的基于矩阵的算法

获取原文
获取原文并翻译 | 示例

摘要

The impulse response coefficients of a two-dimensional (2-D) finite impulse response (FIR) filter are in a matrix form in nature. Conventional optimal design algorithms rearrange the filter's coefficient matrix into a vector and then solve for the coefficient vector using design algorithms for one-dimensional (1-D) FIR filters. Some recent design algorithms have exploited the matrix nature of the 2-D filter's coefficients but not incorporated with any constraints, and thus are not applicable to the design of 2-D filters with explicit magnitude constraints. In this paper, we develop some efficient algorithms exploiting the coefficients' matrix nature for the constrained least-squares (CLS) and minimax designs of quadrantally symmetric 2-D linear-phase FIR filters, both of which can be formulated as an optimization problem or converted into a sequence of subproblems with a positive-definite quadratic cost and a finite number of linear constraints expressed in terms of the filter's coefficient matrix. Design examples and comparisons with several existing algorithms demonstrate the effectiveness and efficiency of the proposed algorithms.
机译:二维(2-D)有限脉冲响应(FIR)滤波器的脉冲响应系数本质上是矩阵形式。常规的最佳设计算法将滤波器的系数矩阵重新排列为向量,然后使用一维(1-D)FIR滤波器的设计算法求解系数向量。一些最近的设计算法已经利用了2-D滤波器的系数的矩阵性质,但是没有结合任何约束,因此不适用于具有显着幅度约束的2-D滤波器的设计。在本文中,我们开发了一些有效的算法,利用象限对称二维线性相位FIR滤波器的约束最小二乘(CLS)和minimax设计的系数矩阵性质,可以将这两个公式表示为优化问题或转换为一系列具有正定二次成本和有限数量线性约束的子问题序列,这些约束以滤波器的系数矩阵表示。设计实例和与几种现有算法的比较证明了所提出算法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号