首页> 外文期刊>Signal Processing, IEEE Transactions on >The Performance of a Matched Subspace Detector That Uses Subspaces Estimated From Finite, Noisy, Training Data
【24h】

The Performance of a Matched Subspace Detector That Uses Subspaces Estimated From Finite, Noisy, Training Data

机译:匹配子空间检测器的性能,该检测器使用根据有限,嘈杂的训练数据估算的子空间

获取原文
获取原文并翻译 | 示例

摘要

We analyze the performance of a matched subspace detector (MSD) where the test signal vector is assumed to reside in an unknown, low-rank $k$ subspace that must be estimated from finite, noisy, signal-bearing training data. Under both a stochastic and deterministic model for the test vector, subspace estimation errors due to limited training data degrade the performance of the standard plug-in detector, relative to that of an oracle detector. To avoid some of this performance loss, we utilize and extend recent results from random matrix theory (RMT) that precisely quantify the quality of the subspace estimate as a function of the eigen-SNR, dimensionality of the system, and the number of training samples. We exploit this knowledge of the subspace estimation accuracy to derive from first-principles a new RMT detector and to characterize the associated ROC performance curves of the RMT and plug-in detectors. Using more than the a critical number of informative components, which depends on the training sample size and eigen-SNR parameters of training data, will result in a performance loss that our analysis quantifies in the large system limit. We validate our asymptotic predictions with simulations on moderately sized systems.
机译:我们分析了匹配子空间检测器(MSD)的性能,其中假定测试信号矢量位于未知的低阶 $ k $ 子空间,必须从有限的,有噪声的,带有信号的训练数据中进行估计。在测试向量的随机模型和确定性模型下,由于有限的训练数据而导致的子空间估计误差会降低标准插入式检测器的性能(相对于Oracle检测器)。为了避免这种性能损失,我们利用并扩展了随机矩阵理论(RMT)的最新结果,该结果根据本征SNR,系统维数和训练样本数量精确地量化了子空间估计的质量。 。我们利用对子空间估计精度的了解,从第一原理中得出一个新的RMT检测器,并表征RMT和插入式检测器的相关ROC性能曲线。使用超过关键数量的信息量,这取决于训练样本大小和训练数据的特征信噪比参数,将导致性能损失,我们的分析在较大的系统范围内对此进行了量化。我们通过在中等大小的系统上进行仿真来验证我们的渐近预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号