首页> 外文期刊>Signal Processing, IEEE Transactions on >Efficient Bayesian Tracking of Multiple Sources of Neural Activity: Algorithms and Real-Time FPGA Implementation
【24h】

Efficient Bayesian Tracking of Multiple Sources of Neural Activity: Algorithms and Real-Time FPGA Implementation

机译:多种神经活动来源的有效贝叶斯跟踪:算法和实时FPGA实现

获取原文
获取原文并翻译 | 示例

摘要

We propose new Bayesian algorithms to automatically track current dipole sources of neural activity in real time. We integrate multiple particle filters to track the dynamic parameters of a known number of dipole sources, resulting in reducing the computational intensity incurred due to the large number of sensors required to observe magnetoencephalography (MEG) or electroencephalography (EEG) measurements. When we also need to estimate the time-varying number of dipole sources, we develop an algorithm based on applying probability hypothesis density filtering (PHDF) for multiple object tracking. The PHDF is implemented using particle filters (PF-PHDF), and it is applied in a closed-loop with MEG/EEG measurements to first estimate the number of sources and then their corresponding amplitude, location and orientation. The PF-PHDF tracking algorithm uses an online, window-based multiple channel decomposition processing approach that reduces the overall processing time and computational complexity. We demonstrate the improved performances of the proposed algorithms by simulating neural activity tracking systems with both synthetic and real data. We map the proposed algorithms onto Xilinx Virtex-5 field-programmable gate array (FPGA) platforms and demonstrate real-time tracking performance. For example, our results showed that the PF-PHDF algorithm can process 100 data samples from three dipoles in only 5.1 ms, when 3 dipole sources are present.
机译:我们提出了新的贝叶斯算法来实时自动跟踪当前的神经活动偶极子源。我们集成了多个粒子滤波器,以跟踪已知数量的偶极子源的动态参数,从而由于观察磁脑电图(MEG)或脑电图(EEG)测量所需的大量传感器而导致计算强度降低。当我们还需要估算偶极子源的时变数量时,我们开发了一种基于概率假设密度滤波(PHDF)的多目标跟踪算法。 PHDF使用粒子滤波器(PF-PHDF)实施,并与MEG / EEG测量一起应用于闭环中,首先估算光源的数量,然后估算其相应的幅度,位置和方向。 PF-PHDF跟踪算法使用基于在线,基于窗口的多通道分解处理方法,从而减少了总体处理时间和计算复杂性。我们通过模拟具有合成和真实数据的神经活动跟踪系统,演示了所提出算法的改进性能。我们将提出的算法映射到Xilinx Virtex-5现场可编程门阵列(FPGA)平台上,并演示了实时跟踪性能。例如,我们的结果表明,当存在3个偶极子源时,PF-PHDF算法仅在5.1毫秒内即可处理来自三个偶极子的100个数据样本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号