首页> 外文期刊>Signal Processing, IEEE Transactions on >Dimension Reduction for Hypothesis Testing in Worst-Case Scenarios
【24h】

Dimension Reduction for Hypothesis Testing in Worst-Case Scenarios

机译:最坏情况下的假设检验的降维

获取原文
获取原文并翻译 | 示例

摘要

This paper considers a “one among many” detection problem, where one has to discriminate between pure noise and one among alternatives that are known up to an amplitude factor. Two issues linked to high dimensionality arise in this framework. First, the computational complexity associated to the Generalized Likelihood Ratio (GLR) with the constraint of sparsity-one inflates linearly with , which can be an obstacle when multiple data sets have to be tested. Second, standard procedures based on dictionary learning aimed at reducing the dimensionality may suffer from severe power losses for some alternatives, thus suggesting a worst-case scenario strategy. In the case where the learned dictionary has column, we show that the exact solution of the resulting detection problem, which can be formulated as a minimax problem, can be obtained by Quadratic Programming. Because it allows a better sampling of the diversity of the alternatives, the case is expected to improve the detection performances over the case . The worst-case analysis of this case, which is more involved, leads us to propose two “minimax learning algorithms”. Numerical results show that these algorithms indeed allow to increase performances over the case and are in fact comparable to the GLR using the full set of alternatives, while being computationally simpler.
机译:本文考虑了一个“众多中的一个”检测问题,其中一个问题是区分纯噪声,另一种是在幅度因子已知的替代方案中。在此框架中出现了与高维相关的两个问题。首先,与广义似然比(GLR)相关联的计算复杂性具有稀疏性-随x线性增加的约束,当必须测试多个数据集时,这可能是一个障碍。其次,基于字典学习的旨在减少尺寸的标准程序可能会因某些替代方案而遭受严重的功率损耗,从而提出了最坏情况的方案策略。在学习词典中有列的情况下,我们表明可以通过二次编程获得所生成的检测问题的精确解,可以将其表达为极大极小问题。因为它允许更好地采样替代方案的多样性,所以预计该案例将改善案例的检测性能。对这种情况的最坏情况分析(涉及更多)导致我们提出两种“最小极大学习算法”。数值结果表明,这些算法确实可以在一定程度上提高性能,并且实际上与使用完整替代方案的GLR相当,同时计算更简单。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号