首页> 外文期刊>IEEE Transactions on Signal Processing >Robust MIMO Equalization for Non-Parametric Channel Model Uncertainty
【24h】

Robust MIMO Equalization for Non-Parametric Channel Model Uncertainty

机译:非参数信道模型不确定性的鲁棒MIMO均衡

获取原文
获取原文并翻译 | 示例

摘要

In this paper, three MIMO robust equalization problems are considered for non-parametric classes of channel models defined by weighted $H_{2}$ or $H_{infty}$ balls (of frequency-responses) and performance criteria based on $H_{2}$ (variance) or $H_{infty}$ norms of error signals. The approach pursued here centers on characterizing the worst-case performance of candidate equalizers, or upper bounds on it, by means of dual Lagrangian functionals. Then, for linearly parametrized, finite-dimensional classes of candidate equalizers, the corresponding robust equalization problems are converted into semi-definite linear programming problems for which approximate solutions can be effectively computed. A simple numerical example is presented, involving $H_{2}$ model uncertainty and error-variance performance, to illustrate, for various levels of uncertainty, the changes in the worst-case performances of the nominally optimal equalizer and of the one, in a specific linear class, which minimizes the worst-case error variance.
机译:本文针对信道模型的非参数类考虑了三个MIMO鲁棒均衡问题,这些模型由加权的(频率响应)$ H_ {2} $或$ H_ {infty} $球和基于$ H_ { 2} $(方差)或$ H_ {infty} $误差信号范数。这里采用的方法着重于通过双重拉格朗日函数来表征候选均衡器的最坏情况性能或上限。然后,对于线性参数化的有限维类的候选均衡器,将相应的鲁棒均衡问题转换为半定线性规划问题,可以有效地计算近似解。给出了一个简单的数值示例,其中涉及$ H_ {2} $模型不确定性和误差-方差性能,以说明在各种不确定性水平下,名义上最佳均衡器和最优化均衡器在最坏情况下的性能变化。特定的线性类别,可最大程度减少最坏情况下的误差差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号