首页> 外文期刊>Signal Processing, IEEE Transactions on >Adaptive Nonlinear Estimation Based on Parallel Projection Along Affine Subspaces in Reproducing Kernel Hilbert Space
【24h】

Adaptive Nonlinear Estimation Based on Parallel Projection Along Affine Subspaces in Reproducing Kernel Hilbert Space

机译:基于仿射子空间并行投影的核Hilbert空间自适应非线性估计。

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel algorithm using a reproducing kernel for adaptive nonlinear estimation. The proposed algorithm is based on three ideas: projection-along-subspace, selective update, and parallel projection. The projection-along-subspace yields excellent performances with small dictionary sizes. The selective update effectively reduces the complexity without any serious degradation of performance. The parallel projection leads to fast convergence/tracking accompanied by noise robustness. A convergence analysis in the non-selective-update case is presented by using the adaptive projected subgradient method. Simulation results exemplify the benefits from the three ideas as well as showing the advantages over the state-of-the-art algorithms. The proposed algorithm bridges the quantized kernel least mean square algorithm of Chen and the sparse sequential algorithm of Dodd
机译:我们提出了一种使用再生核进行自适应非线性估计的新颖算法。所提出的算法基于三个思想:投影子空间,选择性更新和并行投影。投影子空间在字典大小较小的情况下具有出色的性能。选择性更新有效地降低了复杂性,而性能没有任何严重下降。平行投影导致快速收敛/跟踪,并伴有噪声鲁棒性。通过使用自适应投影次梯度法,给出了非选择性更新情况下的收敛性分析。仿真结果证明了这三种思路的优势,并显示了优于最新算法的优势。提出的算法将Chen的量化核最小均方算法与Dodd的稀疏顺序算法联系起来

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号