首页> 外文期刊>Signal Processing, IEEE Transactions on >Data-Efficient Quickest Change Detection in Sensor Networks
【24h】

Data-Efficient Quickest Change Detection in Sensor Networks

机译:传感器网络中数据高效的最快变化检测

获取原文
获取原文并翻译 | 示例

摘要

A sensor network is considered where at each sensor a sequence of random variables is observed. At each time step, a processed version of the observations is transmitted from the sensors to a common node called the fusion center. At some unknown point in time the distribution of observations at an unknown subset of the sensor nodes changes. The objective is to detect the change in distribution as quickly as possible, subject to constraints on the false alarm rate, the cost of observations taken at each sensor, and the cost of communication between the sensors and the fusion center. Minimax formulations are proposed for the above problem and distributed algorithms are proposed in which on-off observation control and censoring is used at each sensor to meet the constraints on data. It is shown that the proposed algorithms are asymptotically optimal for the proposed formulations, as the false alarm rate goes to zero. The asymptotic optimality of the proposed algorithms implies that an arbitrary but fixed fraction of data can be skipped without any loss in asymptotic performance as compared to the scheme where all the observations are used for decision making. It is also shown, via numerical studies, that the proposed algorithms perform significantly better than those based on fractional sampling, in which the classical algorithms from the literature are used and the constraint on the cost of observations is met by skipping a fixed fraction of observations either deterministically or randomly, independent of the observation process.
机译:考虑传感器网络,其中在每个传感器处观察到随机变量序列。在每个时间步长,观测值的处理版本都将从传感器传输到称为融合中心的公共节点。在某个未知的时间点,传感器节点的未知子集处的观测分布会发生变化。目的是在错误警报率,每个传感器进行观察的成本以及传感器与融合中心之间的通信成本受到限制的情况下,尽快检测出分布的变化。针对上述问题提出了Minimax公式,并提出了分布式算法,其中在每个传感器上使用开-关观察控制和检查来满足数据约束。结果表明,当虚警率变为零时,所提出的算法对于所提出的公式是渐近最优的。与将所有观测值用于决策的方案相比,所提出算法的渐近最优性意味着可以跳过任意但固定比例的数据,而不会造成渐进性能的任何损失。通过数值研究还表明,所提出的算法的性能明显优于基于分数采样的算法,其中使用了文献中的经典算法,并且通过跳过固定分数的观测值,可以满足观测成本的约束。确定性或随机性,独立于观察过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号