首页> 外文期刊>Signal Processing, IEEE Transactions on >Parallel Selective Algorithms for Nonconvex Big Data Optimization
【24h】

Parallel Selective Algorithms for Nonconvex Big Data Optimization

机译:非凸大数据优化的并行选择算法

获取原文
获取原文并翻译 | 示例

摘要

We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss–Seidel (i.e., sequential) ones, as well as virtually all possibilities “in between” with only a subset of variables updated at each iteration. Our theoretical convergence results improve on existing ones, and numerical results on LASSO, logistic regression, and some nonconvex quadratic problems show that the new method consistently outperforms existing algorithms.
机译:我们提出了一个分解框架,用于可微分(可能是非凸)函数和(块)可分非光滑,凸函数之和的并行优化。通常使用后一个术语来增强解决方案中的结构,通常是稀疏性。我们的框架非常灵活,既包括完全并行的Jacobi方案,又包括高斯-赛德尔(即顺序)方案,以及几乎所有“介于两者之间”的可能性,每次迭代仅更新一部分变量。我们的理论收敛结果在现有算法的基础上有所改善,在LASSO,逻辑回归和一些非凸二次问题的数值结果表明,该新方法始终优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号