首页> 外文期刊>Signal Processing, IEEE Transactions on >Subspace Methods for Data Attack on State Estimation: A Data Driven Approach
【24h】

Subspace Methods for Data Attack on State Estimation: A Data Driven Approach

机译:状态估计数据攻击的子空间方法:一种数据驱动方法

获取原文
获取原文并翻译 | 示例

摘要

Data attacks on state estimation modify part of system measurements such that the tempered measurements cause incorrect system state estimates. Attack techniques proposed in the literature often require detailed knowledge of system parameters. Such information is difficult to acquire in practice. The subspace methods presented in this paper, on the other hand, learn the system operating subspace from measurements and launch attacks accordingly. Conditions for the existence of an unobservable subspace attack are obtained under the full and partial measurement models. Using the estimated system subspace, two attack strategies are presented. The first strategy aims to affect the system state directly by hiding the attack vector in the system subspace. The second strategy misleads the bad data detection mechanism so that data not under attack are removed. Performance of these attacks are evaluated using the IEEE 14-bus network and the IEEE 118-bus network.
机译:对状态估计的数据攻击会修改系统测量的一部分,从而使调节后的测量导致不正确的系统状态估计。文献中提出的攻击技术通常需要详细的系统参数知识。这种信息在实践中很难获得。另一方面,本文介绍的子空间方法可通过测量来学习系统操作子空间并相应地发起攻击。在完整和部分测量模型下获得了存在不可观察子空间攻击的条件。使用估计的系统子空间,提出了两种攻击策略。第一种策略旨在通过将攻击向量隐藏在系统子空间中来直接影响系统状态。第二种策略误导了不良数据检测机制,因此未受到攻击的数据将被删除。使用IEEE 14总线网络和IEEE 118总线网络评估这些攻击的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号