首页> 外文期刊>IEEE Transactions on Signal Processing >Robust Volume Minimization-Based Matrix Factorization for Remote Sensing and Document Clustering
【24h】

Robust Volume Minimization-Based Matrix Factorization for Remote Sensing and Document Clustering

机译:基于鲁棒体积最小化的矩阵分解技术,用于遥感和文档聚类

获取原文
获取原文并翻译 | 示例

摘要

This paper considers volume minimization (VolMin)-based structured matrix factorization. VolMin is a factorization criterion that decomposes a given data matrix into a basis matrix times a structured coefficient matrix via finding the minimum-volume simplex that encloses all the columns of the data matrix. Recent work showed that VolMin guarantees the identifiability of the factor matrices under mild conditions that are realistic in a wide variety of applications. This paper focuses on both theoretical and practical aspects of VolMin. On the theory side, exact equivalence of two independently developed sufficient conditions for VolMin identifiability is proven here, thereby providing a more comprehensive understanding of this aspect of VolMin. On the algorithm side, computational complexity and sensitivity to outliers are two key challenges associated with real-world applications of VolMin. These are addressed here via a new VolMin algorithm that handles volume regularization in a computationally simple way, and automatically detects and iteratively downweights outliers, simultaneously. Simulations and real-data experiments using a remotely sensed hyperspectral image and the Reuters document corpus are employed to showcase the effectiveness of the proposed algorithm.
机译:本文考虑基于体积最小化(VolMin)的结构化矩阵分解。 VolMin是分解因子,可通过查找包围数据矩阵所有列的最小体积单纯形,将给定的数据矩阵分解为基本矩阵乘以结构系数矩阵。最近的工作表明,VolMin保证了在各种应用中都可以实现的温和条件下,因子矩阵的可识别性。本文侧重于VolMin的理论和实践方面。从理论上讲,这里证明了两个独立开发的足以证明VolMin可识别性的条件的等价性,从而提供了对VolMin这方面的更全面的理解。在算法方面,计算复杂性和对异常值的敏感性是与VolMin实际应用相关的两个关键挑战。通过新的VolMin算法可以解决这些问题,该算法以一种计算简单的方式处理体积正则化,并自动检测并迭代降低异常值。利用遥感高光谱图像和路透社文献语料库进行仿真和实际数据实验,以证明所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号