机译:基于鲁棒体积最小化的矩阵分解技术,用于遥感和文档聚类
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA;
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA;
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA;
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong;
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA;
Signal processing algorithms; Matrix decomposition; Hyperspectral imaging; Load modeling; Minimization;
机译:L1 / 2稀疏的FPGA实现限制了远程感测过极光图像分析的非负矩阵分解算法
机译:通过新颖的K-Mean非负矩阵分解(KNMF)算法使用关键短语提取的魅力文档聚类
机译:基于非负矩阵分解的句子集群的多文件摘要
机译:通过交替优化实现基于体积最小化的稳健矩阵分解
机译:使用非负矩阵分解模型探索数据聚类。
机译:用于多视图基因表达数据的样本聚类和特征选择的鲁棒超图正则化非负矩阵分解
机译:基于鲁棒体积最小化的遥感图像矩阵分解 和文档聚类
机译:遥感用于弹性多灾害灾害响应。第三卷:多传感器图像融合技术用于稳健的社区规模城市损害评估