首页> 外文期刊>IEEE Transactions on Signal Processing >Sensor Placement by Maximal Projection on Minimum Eigenspace for Linear Inverse Problems
【24h】

Sensor Placement by Maximal Projection on Minimum Eigenspace for Linear Inverse Problems

机译:线性反问题中最小特征空间上最大投影对传感器的放置

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two new greedy sensor placement algorithms, named minimum nonzero eigenvalue pursuit (MNEP) and maximal projection on minimum eigenspace (MPME), for linear inverse problems, with greater emphasis on the MPME algorithm for performance comparison with existing approaches. In both MNEP and MPME, we select the sensing locations one-by-one. In this way, the least number of required sensor nodes can be determined by checking whether the estimation accuracy is satisfied after each sensing location is determined. For the MPME algorithm, the minimum eigenspace is defined as the eigenspace associated with the minimum eigenvalue of the dual observation matrix. For each sensing location, the projection of its observation vector onto the minimum eigenspace is shown to be monotonically decreasing w.r.t. the worst case error variance (WCEV) of the estimated parameters. We select the sensing location whose observation vector has the maximum projection onto the minimum eigenspace of the current dual observation matrix. The proposed MPME is shown to be one of the most computationally efficient algorithms. Our Monte-Carlo simulations showed that MPME outperforms the convex relaxation method, the SparSenSe method, and the FrameSense method in terms of WCEV and the mean square error (MSE) of the estimated parameters, especially when the number of available sensor nodes is very limited.
机译:本文针对线性逆问题,提出了两种新的贪婪传感器放置算法,分别称为最小非零特征值追踪(MNEP)和最小特征空间上的最大投影(MPME),重点是与现有方法进行性能比较的MPME算法。在MNEP和MPME中,我们一一选择感应位置。以这种方式,可以通过在确定每个感测位置之后检查是否满足估计精度来确定最少数量的所需传感器节点。对于MPME算法,最小特征空间定义为与对偶观测矩阵的最小特征值相关的特征空间。对于每个感测位置,其观察向量在最小本征空间上的投影显示为单调递减w.r.t。估计参数的最坏情况误差方差(WCEV)。我们选择其观测向量在当前对偶观测矩阵的最小本征空间上具有最大投影的传感位置。所提出的MPME被证明是计算效率最高的算法之一。我们的蒙特卡洛模拟显示,就WCEV和估计参数的均方误差(MSE)而言,MPME优于凸松弛法,SparSenSe方法和FrameSense方法,尤其是在可用传感器节点数量非常有限的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号