首页> 外文期刊>IEEE Transactions on Signal Processing >Recursive Identification Method for Piecewise ARX Models: A Sparse Estimation Approach
【24h】

Recursive Identification Method for Piecewise ARX Models: A Sparse Estimation Approach

机译:分段ARX模型的递归辨识方法:一种稀疏估计方法

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the identification of nonlinear systems using piecewise linear models. By means of a sparse overparameterization, this challenging problem is turned into a convex optimization problem. The proposed method uses a likelihood-based methodology which adaptively penalizes model complexity and directly leads to a recursive implementation. In this sparse estimation approach, the tuning of user parameters is avoided, and the computational complexity is kept linear in the number of data samples. Numerical examples with both simulated and experimental data are presented and the results are compared with previously published methods.
机译:本文使用分段线性模型来处理非线性系统的识别。通过稀疏的过度参数化,这个具有挑战性的问题变成了凸优化问题。所提出的方法使用基于似然的方法,该方法自适应地惩罚模型的复杂性并直接导致递归实现。在这种稀疏估计方法中,避免了用户参数的调整,并且在数据样本数量上,计算复杂度保持线性。给出了包含模拟和实验数据的数值示例,并将结果与​​以前发布的方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号