首页> 外文期刊>IEEE Transactions on Signal Processing >A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization
【24h】

A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization

机译:约束矩阵和张量分解的灵活高效算法框架

获取原文
获取原文并翻译 | 示例

摘要

We propose a general algorithmic framework for constrained matrix and tensor factorization, which is widely used in signal processing and machine learning. The new framework is a hybrid between alternating optimization (AO) and the alternating direction method of multipliers (ADMM): each matrix factor is updated in turn, using ADMM, hence the name AO-ADMM. This combination can naturally accommodate a great variety of constraints on the factor matrices, and almost all possible loss measures for the fitting. Computation caching and warm start strategies are used to ensure that each update is evaluated efficiently, while the outer AO framework exploits recent developments in block coordinate descent (BCD)-type methods which help ensure that every limit point is a stationary point, as well as faster and more robust convergence in practice. Three special cases are studied in detail: non-negative matrix/tensor factorization, constrained matrix/tensor completion, and dictionary learning. Extensive simulations and experiments with real data are used to showcase the effectiveness and broad applicability of the proposed framework.
机译:我们提出了一种用于约束矩阵和张量分解的通用算法框架,该框架广泛应用于信号处理和机器学习中。新框架是交替优化(AO)和乘法器交替方向方法(ADMM)之间的混合体:每个矩阵因子使用ADMM依次更新,因此命名为AO-ADMM。这种组合自然可以适应对因子矩阵的各种限制,以及几乎所有可能的拟合损失度量。计算缓存和热启动策略用于确保有效地评估每个更新,而外部AO框架则利用了块坐标下降(BCD)类型方法的最新发展,这些方法有助于确保每个极限点都是固定点,以及在实践中更快,更强大的融合。详细研究了三种特殊情况:非负矩阵/张量分解,约束矩阵/张量完成和字典学习。大量的真实数据模拟和实验被用来展示所提出框架的有效性和广泛的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号