首页> 外文期刊>IEEE Transactions on Signal Processing >Sparse Codes Auto-Extractor for Classification: A Joint Embedding and Dictionary Learning Framework for Representation
【24h】

Sparse Codes Auto-Extractor for Classification: A Joint Embedding and Dictionary Learning Framework for Representation

机译:分类的稀疏代码自动提取器:用于表示的联合嵌入和字典学习框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss the sparse codes auto-extractor based classification. A joint label consistent embedding and dictionary learning approach is proposed for delivering a linear sparse codes auto-extractor and a multi-class classifier by simultaneously minimizing the sparse reconstruction, discriminative sparse-code, code approximation and classification errors. The auto-extractor is characterized with a projection that bridges signals with sparse codes by learning special features from input signals for characterizing sparse codes. The classifier is trained based on extracted sparse codes directly. In our setting, the performance of the classifier depends on the discriminability of sparse codes, and the representation power of the extractor depends on the discriminability of input sparse codes, so we incorporate label information into the dictionary learning to enhance the discriminability of sparse codes. So, for inductive classification, our model forms an integration process from test signals to sparse codes and finally to assigned labels, which is essentially different from existing sparse coding based approaches that involve an extra sparse reconstruction with the trained dictionary for each test signal. Remarkable results are obtained by our model compared with other state-of-the-arts.
机译:在本文中,我们讨论了基于稀疏代码自动提取器的分类。提出了一种联合标签一致嵌入和字典学习的方法,通过同时最小化稀疏重构,判别性稀疏代码,代码逼近和分类错误,提供线性稀疏代码自动提取器和多分类器。自动提取器的特征是投影,通过从输入信号中学习特殊特征来表征稀疏代码,该投影通过稀疏代码将信号桥接。直接基于提取的稀疏代码训练分类器。在我们的设置中,分类器的性能取决于稀疏代码的可辨性,而提取器的表示能力取决于输入稀疏代码的可辨性,因此我们将标签信息纳入字典学习中以增强稀疏代码的可辨性。因此,对于归纳分类,我们的模型形成了一个从测试信号到稀疏代码,最后到分配的标签的集成过程,这与现有的基于稀疏编码的方法本质上有所不同,后者涉及对每个测试信号使用训练过的字典进行额外的稀疏重构。与其他最新技术相比,我们的模型获得了显着的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号