首页> 外文期刊>IEEE Transactions on Signal Processing >Adaptive-Rate Reconstruction of Time-Varying Signals With Application in Compressive Foreground Extraction
【24h】

Adaptive-Rate Reconstruction of Time-Varying Signals With Application in Compressive Foreground Extraction

机译:时变信号的自适应速率重建及其在压缩前景提取中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose and analyze an online algorithm for reconstructing a sequence of signals from a limited number of linear measurements. The signals are assumed sparse, with unknown support, and evolve over time according to a generic nonlinear dynamical model. Our algorithm, based on recent theoretical results for minimization, is recursive and computes the number of measurements to be taken at each time on-the-fly. As an example, we apply the algorithm to online compressive video foreground extraction, a problem stated as follows: given a set of measurements of a sequence of images with a static background, simultaneously reconstruct each image while separating its foreground from the background. The performance of our method is illustrated on sequences of real images. We observe that it allows a dramatic reduction in the number of measurements or reconstruction error with respect to state-of-the-art compressive background subtraction schemes.
机译:我们提出并分析了一种在线算法,用于从数量有限的线性测量中重建信号序列。假定信号稀疏,支持未知,并根据通用非线性动力学模型随时间变化。我们的算法基于最新的最小化理论结果,具有递归性,可计算每次实时进行的测量次数。例如,我们将该算法应用于在线压缩视频前景提取,问题如下:给定一组具有静态背景的图像序列的测量值,同时重建每个图像,同时将其前景与背景分离。在真实图像序列上说明了我们方法的性能。我们观察到,相对于最新的压缩背景减法,它可以显着减少测量次数或重建误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号