首页> 外文期刊>IEEE Transactions on Signal Processing >GEVD-Based Low-Rank Approximation for Distributed Adaptive Node-Specific Signal Estimation in Wireless Sensor Networks
【24h】

GEVD-Based Low-Rank Approximation for Distributed Adaptive Node-Specific Signal Estimation in Wireless Sensor Networks

机译:基于GEVD的低秩逼近,用于无线传感器网络中的分布式自适应节点特定信号估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the problem of distributed adaptive estimation of node-specific signals for signal enhancement or noise reduction in wireless sensor networks with multi-sensor nodes. The estimation is performed by a multi-channel Wiener filter (MWF) in which a low-rank approximation based on a generalized eigenvalue decomposition (GEVD) is incorporated. In non-stationary or low-SNR conditions, this GEVD-based MWF has been demonstrated to be more robust than the original MWF. In a centralized realization where a fusion center has access to all the nodes’ sensor signal observations, the network-wide sensor signal correlation matrices and the low-rank approximation can be directly estimated and used to compute the network-wide GEVD-based MWF. However, in this paper, we aim to avoid centralizing the sensor signal observations, in which case the network-wide sensor signal correlation matrices cannot be estimated. To this end, we start from the so-called distributed adaptive node-specific signal estimation (DANSE) algorithm, and include GEVD-based low-rank approximations in the per-node local computations. Remarkably, the new algorithm is able to significantly compress the signal observations transmitted between the nodes, while still converging to the network-wide GEVD-based MWF as if each node would have access to all sensor signal observations, even though the low-rank approximations are applied locally at each node. We provide a theoretical convergence analysis, which shows that the algorithm converges to the network-wide GEVD-based MWF under conditions that are less strict than in the original DANSE algorithm. The convergence and performance of the algorithm are further investigated via numerical simulations.
机译:在本文中,我们解决了针对具有多个传感器节点的无线传感器网络中的信号增强或降噪的节点特定信号的分布式自适应估计问题。估计是通过多通道维纳滤波器(MWF)进行的,其中结合了基于广义特征值分解(GEVD)的低秩近似。在非平稳或低信噪比条件下,这种基于GEVD的MWF已被证明比原始MWF更强大。在融合中心可以访问所有节点的传感器信号观测值的集中式实现中,可以直接估计网络范围的传感器信号相关矩阵和低秩近似,并将其用于计算基于网络范围的基于GEVD的MWF。但是,在本文中,我们的目的是避免集中传感器信号的观测值,在这种情况下,无法估计网络范围内的传感器信号相关矩阵。为此,我们从所谓的分布式自适应节点特定信号估计(DANSE)算法开始,并在每个节点本地计算中包括基于GEVD的低秩近似。值得注意的是,新算法能够显着压缩节点之间传输的信号观测值,同时仍然收敛到基于网络的基于GEVD的MWF,就好像每个节点都可以访问所有传感器信号观测值一样,即使低秩近似也是如此。在每个节点上本地应用。我们提供了理论上的收敛性分析,表明该算法在不像原始DANSE算法那么严格的条件下收敛到基于网络的基于GEVD的MWF。通过数值模拟进一步研究了算法的收敛性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号