首页> 外文期刊>IEEE Transactions on Signal Processing >Performance Analysis of the Decentralized Eigendecomposition and ESPRIT Algorithm
【24h】

Performance Analysis of the Decentralized Eigendecomposition and ESPRIT Algorithm

机译:分散特征分解和ESPRIT算法的性能分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider performance analysis of the decentralized power method for the eigendecomposition of the sample covariance matrix based on the averaging consensus protocol. An analytical expression of the second order statistics of the eigenvectors obtained from the decentralized power method, which is required for computing the mean square error (MSE) of subspace-based estimators, is presented. We show that the decentralized power method is not an asymptotically consistent estimator of the eigenvectors of the true measurement covariance matrix unless the averaging consensus protocol is carried out over an infinitely large number of iterations. Moreover, we introduce the decentralized ESPRIT algorithm which yields fully decentralized direction-of-arrival (DOA) estimates. Based on the performance analysis of the decentralized power method, we derive an analytical expression of the MSE of DOA estimators using the decentralized ESPRIT algorithm. The validity of our asymptotic results is demonstrated by simulations.
机译:在本文中,我们考虑基于平均共识协议的样本协方差矩阵特征分解的分散功率方法的性能分析。提出了从分散功率法获得的特征向量二阶统计量的解析表达式,该表达式是计算基于子空间的估计量的均方误差(MSE)所必需的。我们表明,除非平均共识协议是在无数次迭代中进行的,否则分散功率方法并不是真实测量协方差矩阵特征向量的渐近一致估计。此外,我们介绍了分散式ESPRIT算法,该算法可产生完全分散式的到达方向(DOA)估计值。基于分散功率方法的性能分析,我们使用分散式ESPRIT算法推导了DOA估计量的MSE的解析表达式。通过仿真证明了我们渐近结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号