首页> 外文期刊>Signal Processing, IEEE Transactions on >Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization
【24h】

Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization

机译:通过重新加权原子范数最小化来增强稀疏性和分辨率

获取原文
获取原文并翻译 | 示例

摘要

The mathematical theory of super-resolution developed recently by Candès and Fernandes-Granda states that a continuous, sparse frequency spectrum can be recovered with infinite precision via a (convex) atomic norm technique given a set of uniform time-space samples. This theory was then extended to the cases of partial/compressive samples and/or multiple measurement vectors via atomic norm minimization (ANM), known as off-grid/continuous compressed sensing (CCS). However, a major problem of existing atomic norm methods is that the frequencies can be recovered only if they are sufficiently separated, prohibiting commonly known high resolution. In this paper, a novel (nonconvex) sparse metric is proposed that promotes sparsity to a greater extent than the atomic norm. Using this metric an optimization problem is formulated and a locally convergent iterative algorithm is implemented. The algorithm iteratively carries out ANM with a sound reweighting strategy which enhances sparsity and resolution, and is termed as reweighted atomic-norm minimization (RAM). Extensive numerical simulations are carried out to demonstrate the advantageous performance of RAM with application to direction of arrival (DOA) estimation.
机译:Candès和Fernandes-Granda最近开发的超分辨率数学理论指出,在给定一组统一的时空样本的情况下,可以通过(凸)原子范数技术以无限的精度恢复连续的稀疏频谱。然后,通过原子范数最小化(ANM)将这种理论扩展到部分/压缩样本和/或多个测量向量的情况,这被称为离网/连续压缩感测(CCS)。但是,现有原子规范方法的主要问题是,只有将频率充分分开才能恢复频率,这阻碍了众所周知的高分辨率。在本文中,提出了一种新颖的(非凸)稀疏度量,该度量比原子范数更大程度地促进了稀疏性。使用该度量,可以制定优化问题并实现局部收敛的迭代算法。该算法使用声音重加权策略迭代执行ANM,该策略可提高稀疏性和分辨率,被称为重加权原子范数最小化(RAM)。进行了广泛的数值模拟,以证明RAM在到达方向(DOA)估计中的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号