首页> 外文期刊>IEEE Transactions on Signal Processing >Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
【24h】

Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models

机译:高维状态空间模型中的近似平滑和参数估计

获取原文
获取原文并翻译 | 示例

摘要

We present approximate algorithms for performing smoothing in a class of high-dimensional state-space models via sequential Monte Carlo methods (particle filters). In high dimensions, a prohibitively large number of Monte Carlo samples (particles), growing exponentially in the dimension of the state space, are usually required to obtain a useful smoother. Employing blocking approximations, we exploit the spatial ergodicity properties of the model to circumvent this curse of dimensionality. We thus obtain approximate smoothers that can be computed recursively in time and parallel in space. First, we show that the bias of our blocked smoother is bounded uniformly in the time horizon and in the model dimension. We then approximate the blocked smoother with particles and derive the asymptotic variance of idealized versions of our blocked particle smoother to show that variance is no longer adversely effected by the dimension of the model. Finally, we employ our method to successfully perform maximum-likelihood estimation via stochastic gradient-ascent and stochastic expectation-maximization algorithms in a 100-dimensional state-space model.
机译:我们介绍了通过顺序蒙特卡洛方法(粒子滤波器)在一类高维状态空间模型中执行平滑的近似算法。在高维中,通常需要在状态空间维中呈指数增长的大量蒙特卡洛样本(粒子)才能获得有用的平滑度。利用阻塞近似,我们利用模型的空间遍历特性来规避这种维数诅咒。因此,我们获得了可以在时间上递归计算并且在空间上并行计算的近似平滑器。首先,我们证明了阻塞平滑器的偏差在时间范围和模型维度上是均匀限制的。然后,我们用粒子逼近封闭的平滑器,并得出理想化版本的封闭粒子平滑器的渐近方差,以表明方差不再受到模型尺寸的不利影响。最后,我们采用我们的方法,通过在100维状态空间模型中的随机梯度上升和随机期望最大化算法成功地执行了最大似然估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号