首页> 外文期刊>IEEE Transactions on Signal Processing >Sequential Estimation of Hidden ARMA Processes by Particle Filtering—Part I
【24h】

Sequential Estimation of Hidden ARMA Processes by Particle Filtering—Part I

机译:通过粒子滤波对隐藏的ARMA过程进行顺序估计-第一部分

获取原文
获取原文并翻译 | 示例

摘要

This paper is Part I of a series of two papers where we address sequential estimation of wide-sense stationary autoregressive moving average (ARMA) state processes by particle filtering. In Part I, we present estimation methods for ARMA processes of known model order, where the parameters are first known and then unknown. The driving noise of the ARMA process is Gaussian with unknown variance. We derive the transition density of the ARMA state for settings that correspond to different assumptions of a priori knowledge. Instead of estimating all the unknown parameters of the model, we treat them by Rao-Blackwellization. We propose a particle filtering method, with appropriate variations according to available information, for sequential estimation of the unknown state as it evolves with time. We demonstrate the performance of the proposed methods by extensive computer simulations.
机译:本文是两篇文章系列的第一部分,我们将通过粒子滤波解决广义感知自回归移动平均(ARMA)状态过程的顺序估计。在第一部分中,我们介绍了已知模型顺序的ARMA流程的估计方法,其中参数首先已知,然后未知。 ARMA过程的驱动噪声是高斯,方差未知。我们推导了与先验知识的不同假设相对应的设置的ARMA状态的转换密度。我们没有估计模型的所有未知参数,而是通过Rao-Blackwellization处理它们。我们提出了一种粒子滤波方法,根据可用信息进行适当的变化,以便随着时间的发展顺序估计未知状态。我们通过广泛的计算机仿真演示了所提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号