首页> 外文期刊>IEEE Transactions on Signal Processing >An Efficient Minorization Maximization Approach for MIMO Radar Waveform Optimization via Relative Entropy
【24h】

An Efficient Minorization Maximization Approach for MIMO Radar Waveform Optimization via Relative Entropy

机译:基于相对熵的MIMO雷达波形优化的有效最小化最大化方法

获取原文
获取原文并翻译 | 示例

摘要

We propose an efficient algorithm to design waveforms via relative entropy for multiple-input-multiple-output radar in the presence of (signal-dependent) clutter. The proposed algorithm is devised under the framework of minorization-maximization. Unlike the existing algorithm employing a highly nonlinear function to minorize the objective function, the proposed algorithm uses a quadratic function as the minorizer, leading to a much lower computational cost per iteration. In addition, we exploit an accelerated scheme called squared iterative method, to enhance the convergence rate of the proposed algorithm. Moreover, we extend the proposed algorithm to deal with additional constraints (i.e., constant-modulus constraint, similarity constraint, or both). Particularly, the extension allows for a single-stage design of the constrained waveforms and achieves a larger relative entropy than the existing algorithm. Numerical results are provided to show that the proposed algorithm is computationally more efficient and outperforms the existing algorithm when designing the constrained waveforms.
机译:我们提出了一种有效的算法,用于在(信号相关)杂波存在的情况下,通过相对熵为多输入多输出雷达设计波形。该算法是在最小化最大化的框架下设计的。与现有的使用高度非线性函数来最小化目标函数的算法不同,该算法使用二次函数作为最小化器,从而导致每次迭代的计算成本低得多。另外,我们利用称为平方迭代法的加速方案来提高所提出算法的收敛速度。此外,我们将提出的算法扩展为处理其他约束(即恒定模量约束,相似约束或两者)。特别地,扩展允许对受约束的波形进行单级设计,并且与现有算法相比,实现了更大的相对熵。数值结果表明,该算法在设计约束波形时具有更高的计算效率,并且优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号