首页> 外文期刊>IEEE/ACM Transactions on Networking >Optimization of MIMO Device-to-Device Networks via Matrix Fractional Programming: A Minorization–Maximization Approach
【24h】

Optimization of MIMO Device-to-Device Networks via Matrix Fractional Programming: A Minorization–Maximization Approach

机译:通过矩阵分数规划优化MIMO设备到设备网络:最小化最大化方法

获取原文
获取原文并翻译 | 示例

摘要

Interference management is a fundamental issue in device-to-device (D2D) communications whenever the transmitter-and-receiver pairs are located in close proximity and frequencies are fully reused, so active links may severely interfere with each other. This paper devises an optimization strategy named FPLinQ to coordinate the link scheduling decisions among the interfering links, along with power control and beamforming. The key enabler is a novel optimization method called matrix fractional programming (FP) that generalizes previous scalar and vector forms of FP in allowing multiple data streams per link. From a theoretical perspective, this paper provides a deeper understanding of FP by showing a connection to the minorization-maximization (MM) algorithm. From an application perspective, this paper shows that as compared to the existing methods for coordinating scheduling in the D2D network, such as FlashLinQ, ITLinQ, and ITLinQ+, the proposed FPLinQ approach is more general in allowing multiple antennas at both the transmitters and the receivers, and further in allowing arbitrary and multiple possible associations between the devices via matching. Numerical results show that FPLinQ significantly outperforms the previous state-of-the-art in a typical D2D communication environment.
机译:每当发送器和接收器对非常靠近并且频率被完全重用时,干扰管理是设备到设备(D2D)通信中的一个基本问题。因此,活动链路可能会严重相互干扰。本文设计了一种名为FPLinQ的优化策略,以协调干扰链路之间的链路调度决策,以及功率控制和波束成形。关键使能因素是一种称为矩阵分数编程(FP)的新颖优化方法,该方法将FP的以前的标量和向量形式归纳为每个链路允许多个数据流。从理论上讲,本文通过显示与最小化最大化(MM)算法的联系来提供对FP的更深入的了解。从应用的角度来看,本文表明,与D2D网络中现有的协调调度方法(例如FlashLinQ,ITLinQ和ITLinQ +)相比,所提出的FPLinQ方法在允许发射器和接收器都使用多个天线方面更通用。 ,还可以通过匹配允许设备之间的任意和多个可能的关联。数值结果表明,在典型的D2D通信环境中,FPLinQ明显优于以前的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号