首页> 外文期刊>IEEE Transactions on Signal Processing >An Augmented Complex-Valued Least-Mean Kurtosis Algorithm for the Filtering of Noncircular Signals
【24h】

An Augmented Complex-Valued Least-Mean Kurtosis Algorithm for the Filtering of Noncircular Signals

机译:增强复数值最小均值峰度算法用于非圆形信号滤波

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel augmented complex-valued least-mean kurtosis (ACLMK) algorithm is proposed for processing complex-valued signals. The negated kurtosis of the complex-valued error signal is defined as a cost function by using augmented statistics. As a result of the minimization of this cost function, the ACLMK algorithm containing all second-order statistical properties is obtained for processing noncircular complex-valued signals. Moreover, in this paper, convergence and misadjustment conditions of the proposed ACLMK algorithm are derived from the steady-state analysis. The simulation results on complex-valued system identification, prediction, and adaptive noise cancelling problems show that the use of the cost function defined by the negated kurtosis of the complex-valued error signal based on augmented statistics enables the processing of the noncircular complex-valued signals, and significantly improves the performance of the proposed ACLMK algorithm in terms of the mean square deviation, the mean square error, the prediction gain and the convergence rate when compared to other algorithms.
机译:本文提出了一种新颖的增强复数值最小均值峰度(ACLMK)算法来处理复数值信号。通过使用增强的统计量,将复数值误差信号的求反峰度定义为成本函数。由于此成本函数最小,因此获得了包含所有二阶统计特性的ACLMK算法,用于处理非圆形复数值信号。此外,本文从稳态分析中推导了所提出的ACLMK算法的收敛性和失调条件。对复数值系统识别,预测和自适应噪声消除问题的仿真结果表明,使用基于增强统计量的复数值误差信号的负峰度定义的成本函数,可以处理非圆形复数值信号,与其他算法相比,在均方差,均方误差,预测增益和收敛速度方面,显着提高了所提出的ACLMK算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号