首页> 外文期刊>IEEE Transactions on Robotics >Norm-Optimal Iterative Learning Control Applied to Gantry Robots for Automation Applications
【24h】

Norm-Optimal Iterative Learning Control Applied to Gantry Robots for Automation Applications

机译:范式最优迭代学习控制应用于自动化龙门机器人

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the practical implementation of the norm-optimal iterative learning control (NOILC) algorithm. Here, the complexity of this algorithm is first considered with respect to real-time control applications, and a new modified version, fast norm-optimal ILC (F-NOILC), is derived for this application, which potentially allows implementation with a sampling rate three times faster that the original algorithm. A performance index is used to assess the experimental results obtained from applying F-NOILC to an industrial gantry robot system and, in particular, the effects of varying the parameters in the cost function, which is at the heart of the norm-optimal approach
机译:本文关注规范最优迭代学习控制(NOILC)算法的实际实现。在此,首先针对实时控制应用考虑此算法的复杂性,并为此应用派生出新的改进版本快速规范最优ILC(F-NOILC),这可能允许以采样率实现比原始算法快三倍。性能指标用于评估将F-NOILC应用于工业龙门机器人系统所获得的实验结果,尤其是评估成本函数中参数变化的影响,这是规范最优方法的核心

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号