...
首页> 外文期刊>IEEE Transactions on Robotics >Convex Optimization Strategies for Coordinating Large-Scale Robot Formations
【24h】

Convex Optimization Strategies for Coordinating Large-Scale Robot Formations

机译:协调大型机器人编队的凸优化策略

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper investigates convex optimization strategies for coordinating a large-scale team of fully actuated mobile robots. Our primary motivation is both algorithm scalability as well as real-time performance. To accomplish this, we employ a formal definition from shape analysis for formation representation and repose the motion planning problem to one of changing (or maintaining) the shape of the formation. We then show that optimal solutions, minimizing either the total distance or minimax distance the nodes must travel, can be achieved through second-order cone programming techniques. We further prove a theoretical complexity for the shape problem of $O(m^{1.5})$ as well as $O(m)$ complexity in practice, where $m$ denotes the number of robots in the shape configuration. Solutions for large-scale teams (1000''s of robots) can be calculated in real time on a standard desktop PC. Extensions integrating both workspace and vehicle motion constraints are also presented with similar complexity bounds. We expect these results can be generalized for additional motion planning tasks, and will prove useful for improving the performance and extending the mission lives of large-scale robot formations as well as mobile ad hoc networks.
机译:本文研究了凸优化策略,以协调大规模的全驱动移动机器人团队。我们的主要动机是算法可伸缩性以及实时性能。为此,我们使用形状分析的形式定义来表示地层,并将运动计划问题归因于更改(或保持)地层形状之一。然后,我们表明可以通过二阶锥规划技术来实现使节点必须经过的总距离最小或最小最大距离最小的最佳解决方案。我们进一步证明了$ O(m ^ {1.5})$的形状问题的理论复杂性以及实践中$ O(m)$的复杂性,其中$ m $表示形状配置中的机器人数量。大型团队(1000台机器人)的解决方案可以在标准台式PC上实时计算。集成了工作空间约束和车辆运动约束的扩展也以相似的复杂性边界呈现。我们希望这些结果可以推广到其他运动计划任务中,并且将证明对改善大型机器人编队以及移动自组织网络的性能和延长其任务寿命很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号