首页> 外文期刊>IEEE Transactions on Robotics >Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous Agents
【24h】

Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous Agents

机译:大规模自治主体的概率分布控制

获取原文
获取原文并翻译 | 示例

摘要

We present a distributed control algorithm simultaneously solving both the stochastic target assignment and optimal motion control for large-scale swarms to achieve complex formation shapes. Our probabilistic swarm guidance using inhomogeneous Markov chains (PSG–IMC) algorithm adopts a Eulerian density-control framework, under which the physical space is partitioned into multiple bins and the swarm's density distribution over each bin is controlled in a probabilistic fashion to efficiently handle loss or the addition of agents. We assume that the number of agents is much larger than the number of bins and that each agent knows in which bin it is located, the desired formation shape, and the objective function and motion constraints. PSG–IMC determines the bin-to-bin transition probabilities of each agent using a time IMC. These time-varying Markov matrices are computed by each agent in real time using the feedback from the current swarm distribution, which is estimated in a distributed manner. The PSG–IMC algorithm minimizes the expected cost of transitions per time instant that are required to achieve and maintain the desired formation shape, even if agents are added to or removed from the swarm. PSG–IMC scales well with a large number of agents and complex formation shapes and can also be adapted for area exploration applications. We demonstrate the effectiveness of this proposed swarm guidance algorithm by using numerical simulations and hardware experiments with multiple quadrotors.
机译:我们提出了一种分布式控制算法,同时解决了大型群的随机目标分配和最优运动控制,以实现复杂的编队形状。我们使用非均匀马尔可夫链(PSG–IMC)算法的概率群引导采用欧拉密度控制框架,在该框架下,物理空间被划分为多个箱,并且以概率方式控制每个箱上的群密度分布,以有效地处理损失或增加代理商。我们假设代理人的数量远大于箱子的数量,并且每个代理人都知道它位于哪个箱子中,所需的地层形状以及目标函数和运动约束。 PSG–IMC使用时间IMC确定每个代理的bin-to-bin转移概率。每个代理使用当前群体分布的反馈实时计算这些时变马尔可夫矩阵,并以分布式方式对其进行估算。 PSG-IMC算法最大程度地降低了实现和维持所需地层形状所需的每时每刻的过渡成本,即使向该群中添加了代理或从中删除了代理也是如此。 PSG–IMC具有大量的代理和复杂的地层形状,可以很好地进行缩放,也可以适用于区域勘探应用。我们通过使用数值模拟和多四旋翼飞行器的硬件实验,证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号