首页> 外文期刊>IEEE Transactions on Robotics and Automation >Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX=YB
【24h】

Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX=YB

机译:通过求解形式为AX = YB的齐次变换方程来同时进行机器人/世界和工具/法兰校准

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a linear solution that allows a simultaneous computation of the transformations from robot world to robot base and from robot tool to robot flange coordinate frames. The flange frame is defined on the mounting surface of the end-effector. It is assumed that the robot geometry, i.e., the transformation from the robot base frame to the robot flange frame, is known with sufficient accuracy, and that robot end-effector poses are measured. The solution has applications to accurately locating a robot with respect to a reference frame, and a robot sensor with respect to a robot end-effector. The identification problem is cast as solving a system of homogeneous transformation equations of the form A/sub i/X=YB/sub i/,i=1, 2, ..., m. Quaternion algebra is applied to derive explicit linear solutions for X and Y provided that three robot pose measurements are available. Necessary and sufficient conditions for the uniqueness of the solution are stated. Computationally, the resulting solution algorithm is noniterative, fast and robust.
机译:本文提出了一种线性解决方案,该解决方案可以同时计算从机器人世界到机器人基础以及从机器人工具到机器人法兰坐标系的转换。凸缘框架被限定在末端执行器的安装表面上。假定以足够的精度已知机器人的几何形状,即从机器人基础框架到机器人凸缘框架的变换,并且测量了机器人末端执行器姿势。该解决方案具有将机器人相对于参考框架准确定位以及将机器人传感器相对于机器人末端执行器准确定位的应用程序。识别问题被认为是求解形式为A / sub i / X = YB / sub i /,i = 1,2,...,m的齐次变换方程组。如果可以使用三个机器人姿态测量,则四元数代数可用于得出X和Y的显式线性解。陈述了解决方案唯一性的必要条件和充分条件。通过计算,得出的解决方案算法是非迭代的,快速且健壮的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号