首页> 外文期刊>IEEE Transactions on Robotics and Automation >Distributed surveillance and reconnaissance using multiple autonomous ATVs: CyberScout
【24h】

Distributed surveillance and reconnaissance using multiple autonomous ATVs: CyberScout

机译:使用多个自主ATV进行分布式监视和侦察:Cyber​​Scout

获取原文
获取原文并翻译 | 示例

摘要

The objective of the CyberScout project is to develop an autonomous surveillance and reconnaissance system using a network of all-terrain vehicles. We focus on two facets of this system: 1) vision for surveillance and 2) autonomous navigation and dynamic path planning. In the area of vision-based surveillance, we have developed robust, efficient algorithms to detect, classify, and track moving objects of interest (person, people, or vehicle) with a static camera. Adaptation through feedback from the classifier and tracker allow the detector to use grayscale imagery, but perform as well as prior color-based detectors. We have extended the detector using scene mosaicing to detect and index moving objects when the camera is panning or tilting. The classification algorithm performs well with coarse inputs, has unparalleled rejection capabilities, and can flag novel moving objects. The tracking algorithm achieves highly accurate (96%) frame-to-frame correspondence for multiple moving objects in cluttered scenes by determining the discriminant relevance of object features. We have also developed a novel mission coordination architecture, CPAD (Checkpoint/Priority/Action Database), which performs path planning via checkpoint and dynamic priority assignment, using statistical estimates of the environment's motion structure. The motion structure is used to make both preplanning and reactive behaviors more efficient by applying global context. This approach is more computationally efficient than centralized approaches and exploits robot cooperation in dynamic environments better than decoupled approaches.
机译:Cyber​​Scout项目的目标是使用全地形车网络开发一个自主的监视和侦察系统。我们专注于该系统的两个方面:1)监视视觉; 2)自主导航和动态路径规划。在基于视觉的监视领域,我们开发了强大,高效的算法,可以使用静态摄像机检测,分类和跟踪感兴趣的运动对象(人,人或车辆)。通过来自分类器和跟踪器的反馈进行调整,使检测器可以使用灰度图像,但性能与以前的基于颜色的检测器一样好。我们已经扩展了使用场景拼接的检测器,以在摄像机平移或倾斜时检测和索引移动物体。分类算法在粗略输入下表现良好,具有无与伦比的剔除能力,并且可以标记新颖的运动物体。跟踪算法通过确定物体特征的判别相关性,为杂乱场景中的多个运动物体实现了高精度(96%)的帧间对应。我们还开发了一种新颖的任务协调架构CPAD(检查点/优先级/动作数据库),它使用环境运动结构的统计估计值,通过检查点和动态优先级分配执行路径规划。运动结构用于通过应用全局上下文来提高预计划和反应行为的效率。与集中式方法相比,此方法在计算上更有效,并且在动态环境中比解耦方法更好地利用了机器人协作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号