首页> 外文期刊>IEEE Transactions on Reliability >Nonparametric Bootstrapping of the Reliability Function for Multiple Copies of a Repairable Item Modeled by a Birth Process
【24h】

Nonparametric Bootstrapping of the Reliability Function for Multiple Copies of a Repairable Item Modeled by a Birth Process

机译:通过出生过程建模的可修复项目的多个副本的可靠性函数的非参数自举

获取原文
获取原文并翻译 | 示例

摘要

Nonparametric bootstrap inference is developed for the reliability function estimated from censored, nonstationary failure time data for multiple copies of repairable items. We assume that each copy has a known, but not necessarily the same, observation period; and upon failure of one copy, design modifications are implemented for all copies operating at that time to prevent further failures arising from the same fault. This implies that, at any point in time, all operating copies will contain the same set of faults. Failures are modeled as a birth process because there is a reduction in the rate of occurrence at each failure. The data structure comprises a mix of deterministic & random censoring mechanisms corresponding to the known observation period of the copy, and the random censoring time of each fault. Hence, bootstrap confidence intervals & regions for the reliability function measure the length of time a fault can remain within the item until realization as failure in one of the copies. Explicit formulae derived for the re-sampling probabilities greatly reduce dependency on Monte-Carlo simulation. Investigations show a small bias arising in re-sampling that can be quantified & corrected. The variability generated by the re-sampling approach approximates the variability in the underlying birth process, and so supports appropriate inference. An illustrative example describes application to a problem, and discusses the validity of modeling assumptions within industrial practice.
机译:非参数自举推理是针对可靠性函数而开发的,该可靠性函数是根据可修复项目的多个副本的经审查的非平稳故障时间数据估算的。我们假设每个副本都有一个已知但不一定相同的观察期。当一个副本发生故障时,将对当时运行的所有副本进行设计修改,以防止由于同一故障而导致进一步的故障。这意味着在任何时间点,所有运行副本将包含同一组故障。将失败建模为出生过程,因为每次失败的发生率都会降低。数据结构包括与副本的已知观察期相对应的确定性和随机检查机制以及每个故障的随机检查时间的混合。因此,可靠性功能的自举置信区间和区域将测量故障可以保留在项目中的时间长度,直到在其中一个副本中被确认为故障为止。为重采样概率导出的显式公式大大减少了对蒙特卡洛模拟的依赖。调查显示,在重新采样中会产生小的偏差,可以量化和纠正。通过重采样方法生成的变异性近似于基础出生过程中的变异性,因此支持适当的推断。一个说明性示例描述了对问题的应用,并讨论了工业实践中建模假设的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号