首页> 外文期刊>IEEE Transactions on Reliability >A Multi-Objective Software Quality Classification Model Using Genetic Programming
【24h】

A Multi-Objective Software Quality Classification Model Using Genetic Programming

机译:基于遗传规划的多目标软件质量分类模型

获取原文
获取原文并翻译 | 示例

摘要

A key factor in the success of a software project is achieving the best-possible software reliability within the allotted time & budget. Classification models which provide a risk-based software quality prediction, such as fault-prone & not fault-prone, are effective in providing a focused software quality assurance endeavor. However, their usefulness largely depends on whether all the predicted fault-prone modules can be inspected or improved by the allocated software quality-improvement resources, and on the project-specific costs of misclassifications. Therefore, a practical goal of calibrating classification models is to lower the expected cost of misclassification while providing a cost-effective use of the available software quality-improvement resources. This paper presents a genetic programming-based decision tree model which facilitates a multi-objective optimization in the context of the software quality classification problem. The first objective is to minimize the "Modified Expected Cost of Misclassification", which is our recently proposed goal-oriented measure for selecting & evaluating classification models. The second objective is to optimize the number of predicted fault-prone modules such that it is equal to the number of modules which can be inspected by the allocated resources. Some commonly used classification techniques, such as logistic regression, decision trees, and analogy-based reasoning, are not suited for directly optimizing multi-objective criteria. In contrast, genetic programming is particularly suited for the multi-objective optimization problem. An empirical case study of a real-world industrial software system demonstrates the promising results, and the usefulness of the proposed model
机译:软件项目成功的关键因素是在分配的时间和预算内实现最佳的软件可靠性。分类模型可提供基于风险的软件质量预测(例如,容易出错和不容易出错),可以有效地提供有针对性的软件质量保证工作。但是,它们的实用性在很大程度上取决于是否可以通过分配的软件质量改进资源来检查或改进所有易于预测的易发故障的模块,以及取决于项目分类错误的成本。因此,校准分类模型的实际目标是降低误分类的预期成本,同时提供对可用软件质量改进资源的经济有效利用。本文提出了一种基于遗传编程的决策树模型,该模型有助于在软件质量分类问题的背景下进行多目标优化。第一个目标是最小化“错误分类的修正预期成本”,这是我们最近提出的用于选择和评估分类模型的面向目标的措施。第二个目标是优化预测的容易发生故障的模块的数量,以使其等于可以由分配的资源检查的模块的数量。一些常用的分类技术(例如逻辑回归,决策树和基于类比的推理)不适合直接优化多目标标准。相反,遗传规划特别适合于多目标优化问题。实际工业软件系统的经验案例研究证明了令人鼓舞的结果,以及该模型的实用性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号