首页> 外文期刊>Reliability, IEEE Transactions on >Parameter Estimation Methods for Condition-Based Maintenance With Indirect Observations
【24h】

Parameter Estimation Methods for Condition-Based Maintenance With Indirect Observations

机译:间接观测条件下维修的参数估计方法

获取原文
获取原文并翻译 | 示例

摘要

This article proposes methods to estimate the parameters of condition monitored equipment whose failure rate follows the Cox's time-dependent Proportional Hazards Model. Due to errors of measurement, of interpretation, or due to limited accuracy of measurement instruments, the observation process is not perfect, and does not directly reveal the exact degradation state. At each observation moment, we observe and collect information about an indicator of the underlying unobservable degradation state. To match the indicator's value to the unobservable degradation state, the stochastic relation between them is given by an observation probability matrix. In this study, we consider the case of imperfect observations, and we assume that the equipment's unobservable degradation state transition follows a Hidden Markov Model. We determine the Probability Density Function of the time to failure, and use the Maximum Likelihood Estimation to estimate the model's parameters. These are the Proportional Hazards', and the Hidden Markov Models' parameters. We study the cases of censored, and uncensored data; and carry out simulation studies to test the accuracy, and the convergence of the estimation methods.
机译:本文提出了评估状态监测设备参数的方法,该设备的故障率遵循Cox的时间相关比例危害模型。由于测量的误差,解释的误差或由于测量仪器的精度有限,因此观察过程并不完美,并且无法直接显示确切的退化状态。在每个观察时刻,我们观察并收集有关潜在的不可观察到的降解状态指标的信息。为了使指标的值与不可观察的退化状态相匹配,它们之间的随机关系由观察概率矩阵给出。在这项研究中,我们考虑了观测结果不完善的情况,并假设设备的不可观察到的退化状态转变遵循隐马尔可夫模型。我们确定失效时间的概率密度函数,并使用最大似然估计来估计模型的参数。这些是“比例危险”和“隐马尔可夫模型”的参数。我们研究了经过审查和未经审查的数据;并进行仿真研究,以检验准确性和估计方法的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号