首页> 外文期刊>Reliability, IEEE Transactions on >Fingerprint-Based Detection and Diagnosis of Malicious Programs in Hardware
【24h】

Fingerprint-Based Detection and Diagnosis of Malicious Programs in Hardware

机译:基于指纹的硬件恶意程序检测与诊断

获取原文
获取原文并翻译 | 示例

摘要

In today's Integrated Circuit industry, a foundry, an Intellectual Property provider, a design house, or a Computer Aided Design vendor may install a hardware Trojan on a chip which executes a malicious program such as one providing an information leaking back door. In this paper, we propose a fingerprint-based method to detect any malicious program in hardware. We propose a tamper-evident architecture (TEA) which samples runtime signals in a hardware system during the performance of a computation, and generates a cryptographic hash-based fingerprint that uniquely identifies a sequence of sampled signals. A hardware Trojan cannot tamper with any sampled signal without leaving tamper evidence such as a missing or incorrect fingerprint. We further verify fingerprints off-chip such that a hardware Trojan cannot tamper with the verification process. As a case study, we detect hardware-based code injection attacks in a SPARC V8 architecture LEON2 processor. Based on a lightweight block cipher called PRESENT, a TEA requires only a 4.5% area increase, while avoiding being detected by the TEA increases the area of a code injection hardware Trojan with a 1 KB ROM from 2.5% to 36.1% of a LEON2 processor. Such a low cost further enables more advanced tamper diagnosis techniques based on a concurrent generation of multiple fingerprints.
机译:在当今的集成电路行业中,代工厂,知识产权提供商,设计公司或计算机辅助设计供应商可以在执行恶意程序的芯片上安装硬件特洛伊木马程序,例如提供信息泄露的后门程序。在本文中,我们提出了一种基于指纹的方法来检测硬件中的任何恶意程序。我们提出了一种防篡改架构(TEA),该架构可在计算执行期间对硬件系统中的运行时信号进行采样,并生成基于加密哈希的指纹,该指纹可唯一标识采样信号序列。硬件木马无法篡改任何采样信号,而不会留下篡改证据,例如丢失或不正确的指纹。我们进一步在芯片外验证指纹,以使硬件Trojan无法篡改验证过程。作为案例研究,我们在SPARC V8架构LEON2处理器中检测基于硬件的代码注入攻击。基于称为PRESENT的轻量级分组密码,TEA仅需要增加4.5%的面积,而避免被TEA所检测到,因此将具有1 KB ROM的代码注入硬件Trojan的面积从LEON2处理器的2.5%增加到36.1% 。这样的低成本还使得能够基于同时生成多个指纹来实现更先进的篡改诊断技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号