首页> 外文期刊>Reliability, IEEE Transactions on >Remaining Useful Life Prediction for a Nonlinear Heterogeneous Wiener Process Model With an Adaptive Drift
【24h】

Remaining Useful Life Prediction for a Nonlinear Heterogeneous Wiener Process Model With an Adaptive Drift

机译:具有自适应漂移的非线性异构维纳过程模型的剩余使用寿命预测

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear degradation trajectories are encountered frequently, and not all of them evolve homogeneously in practical systems. To take nonlinearity, heterogeneity, and the entire historical degradation data into account, we propose a nonlinear heterogeneous Wiener process model with an adaptive drift to characterize degradation trajectories. A state-space based method is employed to delineate our model. Due to the introduction of the adaptive drift, it is difficult to directly apply Kalman filter methods to update the distribution of the estimated degradation drift. To address this issue, we develop an online filtering algorithm based on Bayes' theorem. The expectation-maximization (EM) algorithm, as well as a novel Bayes'-theorem-based smoother, are adopted to estimate the unknown parameters in our model. Moreover, the distribution of the predicted remaining useful life (RUL) incorporating the complete distribution of the estimated degradation drift is achieved analytically. Finally, a simulation, and a case study are provided to validate the proposed approach.
机译:非线性退化轨迹经常遇到,并且在实际系统中并非所有的退化轨迹都是均匀的。为了考虑非线性,异质性和整个历史退化数据,我们提出了具有自适应漂移特性的非线性异质Wiener过程模型来表征退化轨迹。使用基于状态空间的方法来描述我们的模型。由于引入了自适应漂移,因此很难直接应用卡尔曼滤波方法来更新估计的降级漂移的分布。为了解决这个问题,我们开发了一种基于贝叶斯定理的在线过滤算法。期望最大化(EM)算法以及基于贝叶斯定理的新型平滑器被用来估计模型中的未知参数。此外,可以通过分析获得包含估计的降解漂移的完整分布的预测剩余使用寿命(RUL)的分布。最后,提供了仿真和案例研究以验证所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号