首页> 外文期刊>Reliability, IEEE Transactions on >A Learning-to-Rank Approach to Software Defect Prediction
【24h】

A Learning-to-Rank Approach to Software Defect Prediction

机译:一种从学习到排名的软件缺陷预测方法

获取原文
获取原文并翻译 | 示例

摘要

Software defect prediction can help to allocate testing resources efficiently through ranking software modules according to their defects. Existing software defect prediction models that are optimized to predict explicitly the number of defects in a software module might fail to give an accurate order because it is very difficult to predict the exact number of defects in a software module due to noisy data. This paper introduces a learning-to-rank approach to construct software defect prediction models by directly optimizing the ranking performance. In this paper, we build on our previous work, and further study whether the idea of directly optimizing the model performance measure can benefit software defect prediction model construction. The work includes two aspects: one is a novel application of the learning-to-rank approach to real-world data sets for software defect prediction, and the other is a comprehensive evaluation and comparison of the learning-to-rank method against other algorithms that have been used for predicting the order of software modules according to the predicted number of defects. Our empirical studies demonstrate the effectiveness of directly optimizing the model performance measure for the learning-to-rank approach to construct defect prediction models for the ranking task.
机译:软件缺陷预测可以通过根据软件模块的缺陷对软件模块进行排名来帮助有效地分配测试资源。被优化以明确地预测软件模块中的缺陷数量的现有软件缺陷预测模型可能无法给出准确的顺序,因为由于有噪声的数据很难预测软件模块中的缺陷的确切数量。本文介绍了一种通过直接优化排名性能来构建软件缺陷预测模型的按等级学习方法。在本文的基础上,我们进一步研究并研究了直接优化模型性能度量的想法是否可以使软件缺陷预测模型的构建受益。这项工作包括两个方面:一个是将“按等级学习”方法应用于现实世界中的数据集以进行软件缺陷预测的新颖应用,其次是“按等级学习”方法与其他算法的综合评估和比较。已经根据预测的缺陷数量预测软件模块的顺序。我们的经验研究表明,直接优化模型性能度量以进行按等级学习的方法,以构造用于排名任务的缺陷预测模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号