首页> 外文期刊>IEEE Transactions on Reliability >Bayes inference for a non-homogeneous Poisson process with power intensity law (reliability)
【24h】

Bayes inference for a non-homogeneous Poisson process with power intensity law (reliability)

机译:基于功率强度定律(可靠性)的非均匀泊松过程的贝叶斯推断

获取原文
获取原文并翻译 | 示例

摘要

Monte Carlo simulation is used to assess the statistical properties of some Bayes procedures in situations where only a few data on a system governed by a NHPP (nonhomogeneous Poisson process) can be collected and where there is little or imprecise prior information available. In particular, in the case of failure truncated data, two Bayes procedures are analyzed. The first uses a uniform prior PDF (probability distribution function) for the power law and a noninformative prior PDF for alpha , while the other uses a uniform PDF for the power law while assuming an informative PDF for the scale parameter obtained by using a gamma distribution for the prior knowledge of the mean number of failures in a given time interval. For both cases, point and interval estimation of the power law and point estimation of the scale parameter are discussed. Comparisons are given with the corresponding point and interval maximum-likelihood estimates for sample sizes of 5 and 10. The Bayes procedures are computationally much more onerous than the corresponding maximum-likelihood ones, since they in general require a numerical integration. In the case of small sample sizes, however, their use may be justified by the exceptionally favorable statistical properties shown when compared with the classical ones. In particular, their robustness with respect to a wrong assumption on the prior beta mean is interesting.
机译:在只能收集由NHPP(非均匀泊松过程)控制的系统上的少量数据且几乎没有或不精确的现有信息的情况下,使用蒙特卡罗模拟来评估某些贝叶斯程序的统计特性。特别是在数据被截断的情况下,将分析两个贝叶斯过程。第一个对幂定律使用统一的先验PDF(概率分布函数),对alpha使用非情报先验PDF,而第二个函数对幂定律使用统一的PDF,同时假设通过伽马分布获得的比例参数的信息性PDF对于给定时间间隔内的平均故障数的先验知识。对于这两种情况,都讨论了幂律的点和间隔估计以及比例参数的点估计。使用样本大小为5和10的相应点和区间最大似然估计进行比较。贝叶斯方法在计算上比相应的最大似然方法更为繁重,因为它们通常需要数值积分。但是,在小样本量的情况下,与传统样本相比,可以通过显示出特别有利的统计特性来证明其用途合理。特别是,它们对于先前的beta均值的错误假设的鲁棒性令人关注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号