首页> 外文期刊>IEEE Transactions on Reliability >Bayes reliability estimation using multiple sources of prior information: binomial sampling
【24h】

Bayes reliability estimation using multiple sources of prior information: binomial sampling

机译:使用多个先验信息源进行贝叶斯可靠性估计:二项式抽样

获取原文
获取原文并翻译 | 示例

摘要

The authors develop Bayes estimators for the true binomial survival probability when there exist multiple sources of prior information. For each source of prior information, incomplete (partial) prior information is assumed to exist in the form of either a stated prior mean of p or a stated prior credibility interval on p; p is the parameter about which there is a degree of belief regarding its unknown value, i.e., p is treated as though it were the unknown value of a random variable. Both maximum entropy and maximum posterior risk criteria are used to determine a beta prior for each source. A mixture of these beta priors is then taken as the combined prior, after which Bayes theorem is used to obtain the final mixed beta posterior distribution from which the desired estimates are obtained. Two numerical examples illustrate the method.
机译:当存在多个先验信息源时,作者为真正的二项式生存概率开发贝叶斯估计器。对于每个先验信息源,假定存在不完整的(部分)先验信息,其形式为p的既定先验平均值或p上的先验可信区间。 p是关于其未知值有一定程度置信度的参数,即,将p视为是随机变量的未知值。最大熵和最大后验风险标准都用于确定每个来源的beta优先级。然后将这些beta先验的混合物作为组合先验,然后使用贝叶斯定理获得最终的混合beta后验分布,从中获得期望的估计。两个数值示例说明了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号