首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems
【24h】

Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems

机译:神经修复系统植入式数字尖峰分选电路的电源可行性

获取原文
获取原文并翻译 | 示例

摘要

A new class of neural prosthetic systems aims to assist disabled patients by translating cortical neural activity into control signals for prosthetic devices. Based on the success of proof-of-concept systems in the laboratory, there is now considerable interest in increasing system performance and creating implantable electronics for use in clinical systems. A critical question that impacts system performance and the overall architecture of these systems is whether it is possible to identify the neural source of each action potential (spike sorting) in real-time and with low power. Low power is essential both for power supply considerations and heat dissipation in the brain. In this paper we report that state-of-the-art spike sorting algorithms are not only feasible using modern complementary metal oxide semiconductor very large scale integration processes, but may represent the best option for extracting large amounts of data in implantable neural prosthetic interfaces.
机译:新型的神经修复系统旨在通过将皮层神经活动转化为修复设备的控制信号来帮助残疾患者。基于概念验证系统在实验室中的成功应用,现在人们对提高系统性能和创建用于临床系统的可植入电子设备非常感兴趣。影响系统性能和这些系统整体架构的一个关键问题是,是否有可能实时且低功耗地识别每个动作电位的神经源(峰值排序)。低功耗对于电源供应和大脑散热都是必不可少的。在本文中,我们报告说,最先进的尖峰排序算法不仅可以用于现代互补金属氧化物半导体超大规模集成工艺,而且可以代表在植入式人工神经假体界面中提取大量数据的最佳选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号