首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >A parametric feature extraction and classification strategy for brain-computer interfacing
【24h】

A parametric feature extraction and classification strategy for brain-computer interfacing

机译:脑机接口的参数特征提取与分类策略

获取原文
获取原文并翻译 | 示例

摘要

Parametric modeling strategies are explored in conjunction with linear discriminant analysis for use in an electroencephalogram (EEG)-based brain-computer interface (BCI). A left/right self-paced typing exercise is analyzed by extending the usual autoregressive (AR) model for EEG feature extraction with an AR with exogenous input (ARX) model for combined filtering and feature extraction. The ensemble averaged Bereitschaftspotential (an event related potential preceding the onset of movement) forms the exogenous signal input to the ARX model. Based on trials with six subjects, the ARX case of modeling both the signal and noise was found to be considerably more effective than modeling the noise alone (common in BCI systems) with the AR method yielding a classification accuracy of 52.8 /spl plusmn/ 4.8% and the ARX method an accuracy of 79.1 /spl plusmn/ 3.9% across subjects. The results suggest a role for ARX-based feature extraction in BCIs based on evoked and event-related potentials.
机译:结合线性判别分析探索了参数化建模策略,以用于基于脑电图(EEG)的脑机接口(BCI)。通过使用带有外来输入(ARX)模型的AR扩展用于脑电图特征提取的常规自回归(AR)模型以进行组合的过滤和特征提取,来分析左右自定型打字练习。集合平均Bereitschaftspotential(运动开始之前与事件相关的电位)形成输入到ARX模型的外源信号。根据对六名受试者的试验,发现使用AR方法对信号和噪声进行建模的案例比采用噪声方法对单独的噪声进行建模(在BCI系统中常见)要有效得多,其分类精度为52.8 / spl plusmn / 4.8。 %和ARX方法在受试者之间的准确性为79.1 / spl plusmn / 3.9%。结果表明,基于诱发电位和事件相关电位,BCI中基于ARX的特征提取有一定作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号