首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Robust classification of EEG signal for brain-computer interface
【24h】

Robust classification of EEG signal for brain-computer interface

机译:脑电接口的脑电信号的可靠分类

获取原文
获取原文并翻译 | 示例

摘要

We report the implementation of a text input application (speller) based on the P300 event related potential. We obtain high accuracies by using an SVM classifier and a novel feature. These techniques enable us to maintain fast performance without sacrificing the accuracy, thus making the speller usable in an online mode. In order to further improve the usability, we perform various studies on the data with a view to minimizing the training time required. We present data collected from nine healthy subjects, along with the high accuracies (of the order of 95% or more) measured online. We show that the training time can be further reduced by a factor of two from its current value of about 20 min. High accuracy, fast learning, and online performance make this P300 speller a potential communication tool for severely disabled individuals, who have lost all other means of communication and are otherwise cut off from the world, provided their disability does not interfere with the performance of the speller.
机译:我们报告基于P300事件相关潜力的文本输入应用程序(speller)的实现。通过使用SVM分类器和新颖功能,我们获得了很高的准确性。这些技术使我们能够在不牺牲准确性的情况下保持快速性能,从而使拼写器可用于在线模式。为了进一步提高可用性,我们对数据进行了各种研究,以最大程度地减少所需的培训时间。我们提供了从九名健康受试者收集的数据,以及在线测量的高准确性(95%或更高)。我们表明,训练时间可以从当前值(约20分钟)进一步减少两倍。 P300拼写器具有很高的准确性,快速的学习能力和在线性能,它是严重残障人士的潜在沟通工具,这些残障人士失去了所有其他沟通方式,并且与世界隔绝了,但前提是他们的残障不会影响他们的表现。拼写。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号