首页> 外文期刊>Neural Systems and Rehabilitation Engineering, IEEE Transactions on >Application of Real-Time Loudness Models Can Improve Speech Recognition for Cochlear Implant Users
【24h】

Application of Real-Time Loudness Models Can Improve Speech Recognition for Cochlear Implant Users

机译:实时响度模型的应用可以改善人工耳蜗用户的语音识别

获取原文
获取原文并翻译 | 示例

摘要

The aim of cochlear implant (CI) stimulation strategies is to appropriately encode the important aspects of sound into a pattern of electrical stimulation. Recent research using numerical models of loudness perception has identified that there are large differences between how loudness is encoded by existing CI sound-processing strategies and how loudness is experienced by normally hearing listeners. In this paper, we present a new CI sound-coding algorithm aimed at addressing these discrepancies. This strategy, named SCORE, uses models of electric and acoustic loudness to modify the output of an existing CI sound-processing scheme in real time, so that the loudness changes are more accurately represented in the patterns of electrical stimulation. Five subjects (six implanted ears) were tested for understanding of speech presented at relatively low levels in quiet conditions. Using SCORE, subjects demonstrated an average 8.8 percentage-point statistically significant improvement $(p < 0.02)$ in the number of words correctly identified relative to ACE, a commonly used stimulation strategy. These findings show that loudness changes over time are important for speech intelligibility, and that improving loudness coding in existing CI devices may lead to perceptual benefits.
机译:耳蜗植入(CI)刺激策略的目的是将声音的重要方面适当地编码为电刺激模式。使用响度感知的数值模型的最新研究已经发现,现有CI声音处理策略对响度的编码方式与正常听众如何体验响度之间存在很大差异。在本文中,我们提出了一种新的CI声音编码算法,旨在解决这些差异。这种称为SCORE的策略使用电和声响度模型实时修改现有CI声音处理方案的输出,以便在电刺激模式中更准确地表示响度变化。测试了五个对象(六个植入的耳朵)以了解在安静条件下以相对较低的水平呈现的语音。使用SCORE,受试者证明了相对于ACE(一种常用的刺激策略)正确识别的单词数平均有8.8个百分点的统计学显着性改善(p <0.02)$。这些发现表明,响度随时间的变化对于语音可懂度很重要,并且改善现有CI设备中的响度编码可能会带来感知上的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号