首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Learning, Generalization, and Scalability of Abstract Myoelectric Control
【24h】

Learning, Generalization, and Scalability of Abstract Myoelectric Control

机译:抽象磁电控的学习,泛化和可扩展性

获取原文
获取原文并翻译 | 示例

摘要

Motor learning-based methods offer an alternative paradigm to machine learning-based methods for controlling upper-limb prosthetics. Within this paradigm, the patterns of muscular activity used for control can differ from those which control biological limbs. Practice expedites the learning of these new, functional patterns of muscular activity. We envisage that these methods can result in enhanced control without increasing device complexity. However, key questions about training protocols, generalisation and scalability of motor learning-based methods have remained. In this work, we pursue three objectives: 1) to validate the motor learning-based abstract myoelectric control approach with people with upper-limb difference for the first time; 2) to test whether, after training, participants can generalize their learning to tasks of increased difficulty; and 3) to show that abstract myoelectric control scales with additional input signals, offering a larger control range. In three experiments, 25 limb-intact participants and 8 people with a limb difference (congenital and acquired) experienced a motor learning-based myoelectric controlled interface. We show that participants with upper-limb difference can learn to control the interface and that performance increases with experience. Across experiments, participant performance on easier lower target density tasks generalized to more difficult higher target density tasks. A proof-of-concept study demonstrates that learning-based control scales with additional myoelectric channels. Our results show that human motor learning-based approaches can enhance the number of distinct outputs from the musculature, thereby increasing the functionality of prosthetic hands and providing a viable alternative to machine learning.
机译:基于机动学习的方法为控制上肢假肢的基于机器学习的方法提供替代范式。在该范例中,用于对照的肌肉活性的模式可能与控制生物肢体的肌肉活性不同。实践加快了这些新功能模式的肌肉活动的学习。我们设想这些方法可以导致控制的增强控制而不会增加设备复杂性。但是,对基于电机学习的方法的培训协议,泛化和可扩展性的关键问题仍然存在。在这项工作中,我们追求三个目标:1)验证基于电机学习的抽象肌电控制方法,这是第一次与上肢差异的人; 2)测试是否在培训后,参与者可以概括他们的学习,以便增加难度的任务; 3)显示抽象的磁磁控制尺度具有额外的输入信号,提供更大的控制范围。在三个实验中,25只肢体完整的参与者和8人,具有肢体差异(先天性和获得的)经历了基于电机学习的肌电控制界面。我们展示了上肢差异的参与者可以学习控制界面,并且性能随着体验而增加。在实验中,参与者的性能更容易降低目标密度任务,以更加艰巨的目标密度任务。概念验证研究表明,基于学习的控制尺度具有额外的磁电信道。我们的研究结果表明,人机学习的方法可以增强肌肉组织的不同输出的数量,从而提高了假肢手的功能,并提供了机器学习的可行替代品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号