首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Temporal–Spatial Patterns in Dynamic Functional Brain Network for Self-Paced Hand Movement
【24h】

Temporal–Spatial Patterns in Dynamic Functional Brain Network for Self-Paced Hand Movement

机译:自节尾手机动态功能脑网络中的时间空间模式

获取原文
获取原文并翻译 | 示例

摘要

Dynamic functional connectivity is attracting a growing interest as it has been suggested to be a more accurate representation of functional brain networks compared to traditional functional connectivity. It is believed that the functional connectivity fluctuations result from the transitions among different brain states other than continuous changes in the brain. In this paper, we aim to investigate the spatial-temporal changes in the interactions between different brain regions during a self-paced hand movement with EEG signals. A systematic analysis framework, consisting of connectivity metric calculation, brain state segmentation, temporal representative graph extraction, and spatial community detection, is proposed to analyze the dynamic functional connectivity. First, corrected imaginary coherency is applied to measure the functional connectivity as it is insensitive to EEG volume conduction problem. Second, singular value decomposition (SVD) vector space distance between the connectivity matrices at two adjacent time points is calculated. In addition, the brain states are segmented based on the changes in the time series of SVD vector space distances. Third, one representative graph is summarized within each state segment using the SVD vectors corresponding to the k largest singular values. Finally, spatial patterns on the representative graph are detected with a modularity-based community detection method. Based on the SVD vector space distance using the change point detection method, a series of brain states lasting for hundreds of milliseconds are identified. Moreover, we find that the sudden decrease points in SVD vector space distance coincide with early Bereitschafts potential. In addition, we find that there are several connectivity patterns along the time before the onset of movement. At first, the functional connectivity is relatively dispersed. Gradually, the functional connectivity begins to concentrate and the predominant communities in each dynamic functional network can be observed clearly.
机译:动态功能连接吸引了越来越多的兴趣,因为与传统的功能连通性相比,建议是功能性脑网络的更准确表示。据信,功能连接波动由不同脑状态之间的过渡产生,而不是大脑的连续变化。在本文中,我们的目的是在用EEG信号中调查不同脑区域之间的相互作用的空间时间变化。提出了一种由连接度量计算,脑状态分割,时间代表性图提取和空间群落检测组成的系统分析框架,分析了动态功能连接。首先,应用校正的虚构一致性以测量功能连接,因为它对EEG卷导电问题不敏感。第二,计算两个相邻时间点的连接矩阵之间的奇异值分解(SVD)矢量空间距离。此外,基于SVD矢量空间距离的时间序列的变化进行脑状态。第三,使用对应于K最大奇异值的SVD向量来概述一个代表性图。最后,用基于模块化的社区检测方法检测代表性图上的空间模式。基于使用变化点检测方法的SVD矢量空间距离,确定了一系列持续数百毫秒的大脑状态。此外,我们发现SVD矢量空间距离中的突然减小点与早期的BereitsChafts潜力一致。此外,我们发现运动开始前几个连接模式。首先,功能连接相对分散。逐渐地,功能连接开始集中,并且可以清楚地观察每个动态功能网络中的主要社区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号