首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >On the Relative Contribution of Deep Convolutional Neural Networks for SSVEP-Based Bio-Signal Decoding in BCI Speller Applications
【24h】

On the Relative Contribution of Deep Convolutional Neural Networks for SSVEP-Based Bio-Signal Decoding in BCI Speller Applications

机译:关于BCI拼写应用中SSVEP基生物信号解码的深度卷积神经网络的相对贡献

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer interfaces (BCI) harnessing steady state visual evoked potentials (SSVEPs) manipulate the frequency and phase of visual stimuli to generate predictable oscillations in neural activity. For BCI spellers, oscillations are matched with alphanumeric characters allowing users to select target numbers and letters. Advances in BCI spellers can, in part, be accredited to subject-specific optimization, including; 1) custom electrode arrangements; 2) filter sub-band assessments; and 3) stimulus parameter tuning. Here, we apply deep convolutional neural networks (DCNNs) demonstrating cross-subject functionality for the classification of frequency and phase encoded SSVEP. Electroencephalogram (EEG) data are collected and classified using the same parameters across subjects. Subjects fixate forty randomly cued flickering characters (5x8 keyboard array) during concurrent wet-EEG acquisition. These data are provided by an open source SSVEP dataset. Our proposed DCNN, PodNet, achieves 86% and 77% offline accuracy of classification across-subjects for two data capture periods, respectively, 6-seconds (information transfer rate = 40 bpm) and 2-seconds (information transfer rate = 101 bpm). Subjects demonstrating suboptimal (<70%) performance are classified to similar levels after a short subject-specific training period. PodNet outperforms filter-bank canonical correlation analysis for a low volume (3-channel) clinically feasible occipital electrode configuration. The networks defined in this study achieve functional performance for the largest number of SSVEP classes decoded via DCNN to date. Our results demonstrate PodNet achieves cross-subject, calibrationless classification and adaptability to sub-optimal subject data, and low-volume EEG electrode arrangements.
机译:脑电脑接口(BCI)利用稳态视觉诱发电位(SSVEPS)操纵视觉刺激的频率和相位,以在神经活动中产生可预测的振荡。对于BCI拼写器,振荡与字母数字字符匹配,允许用户选择目标数字和字母。 BCI拼写的进展部分可以分配到特定的主题优化,包括; 1)定制电极装置; 2)过滤子带评估; 3)刺激参数调谐。在这里,我们应用深度卷积神经网络(DCNN),用于频率和相位编码SSVEP的分类的交叉对象功能。脑电图(EEG)数据被收集并在跨对象中使用相同的参数进行分类。在并发湿-EEG采集期间,受试者在“同时湿-EEG采集期间固定四十个随机闪烁的闪烁字符(5x8键盘阵列)。这些数据由开源SSVEP数据集提供。我们提出的DCNN,PODNET,分别实现了两个数据捕获期的分类86%和77%的分类准确性,6秒(信息传输率= 40bpm)和2秒(信息传输率= 101bpm) 。在特定于学科专门的培训期后,展示次优(<70%)性能的受试者归类为类似水平。 PODNET优于滤波器 - 银行规范相关性分析,用于低体积(3通道)临床可行枕部电极配置。本研究中定义的网络实现了通过DCNN解码的最大数量的SSVEP类功能性能。我们的结果展示了Podnet实现了交叉对象,无滤网分类和对次优孔数据和低容量EEG电极布置的适应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号