首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >SeqSleepNet: End-to-End Hierarchical Recurrent Neural Network for Sequence-to-Sequence Automatic Sleep Staging
【24h】

SeqSleepNet: End-to-End Hierarchical Recurrent Neural Network for Sequence-to-Sequence Automatic Sleep Staging

机译:SEQSLEEPNET:序列到序列自动睡眠暂存的端到端分层复制神经网络

获取原文
获取原文并翻译 | 示例

摘要

Automatic sleep staging has been often treated as a simple classification problem that aims at determining the label of individual target polysomnography epochs one at a time. In this paper, we tackle the task as a sequence-to-sequence classification problem that receives a sequence of multiple epochs as input and classifies all of their labels at once. For this purpose, we propose a hierarchical recurrent neural network named SeqSleepNet (source code is available at http://github.com/pquochuy/SeqSleepNet).At the epoch processing level, the network consists of a filterbank layer tailored to learn frequency-domain filters for preprocessing and an attention-based recurrent layer designed for shortterm sequential modeling. At the sequence processing level, a recurrent layer placed on top of the learned epoch-wise features for long-term modeling of sequential epochs. The classification is then carried out on the output vectors at every time step of the top recurrent layer to produce the sequence of output labels. Despite being hierarchical, we present a strategy to train the network in an end-to-end fashion. We show that the proposed network outperforms the state-of-the-art approaches, achieving an overall accuracy, macro F1-score, and Cohen's kappa of 87.1%, 83.3%, and 0.815 on a publicly available dataset with 200 subjects.
机译:自动睡眠分期经常被视为一个简单的分类问题,旨在一次确定单个目标多面体摄影时期的标签。在本文中,我们将任务作为序列到序列的分类问题,接收多个时期的序列作为输入,并立即对所有标签进行分类。为此目的,我们提出了一个名为SEQSLEEPNET的分层复制神经网络(源代码在http://github.com/pquochuy/seqsleepnet上找到)。该网络由epoch处理级别组成,由默认为学习频率定制的默认的滤波器层用于预处理的域滤波器和专为短期序列建模设计的基于注意的复发层。在序列处理水平上,将复制层放置在学习的跨时代特征的顶部,用于连续时期的长期建模。然后在顶部复发层的每次步骤中对输出矢量进行分类以产生输出标签序列。尽管是等级的,但我们展示了一种以端到端的方式训练网络的策略。我们表明,拟议的网络优于最先进的方法,实现了87.1%,83.3%和0.815的整体准确性,宏F1分,以及0.815的公开数据集,其中包含200个科目。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号