首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Magnitude Squared Coherence Method based on Weighted Canonical Correlation Analysis for EEG Synchronization Analysis in Amnesic Mild Cognitive Impairment of Diabetes Mellitus
【24h】

Magnitude Squared Coherence Method based on Weighted Canonical Correlation Analysis for EEG Synchronization Analysis in Amnesic Mild Cognitive Impairment of Diabetes Mellitus

机译:基于加权典型相关分析的平方平方相干法在糖尿病轻度认知障碍脑电图同步分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Type 2 diabetes mellitus (T2DM) increases the risk of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). aMCI is the transitory stage from normal cognition to AD, which seriously impacts the quality of human life, especially for old people. Electroencephalography (EEG) coherence can assess the functional connectivity between different brain regions, which is an effective way to research the pathogenesis of aMCI and distinguish aMCI patients from normal cognitive subjects. In this paper, we propose a new EEG coherence approach named magnitude squared coherence based on weighted canonical correlation analysis (WCCA-MSC) which improves the accuracy in coherence estimation by the means of weighting. In comparison to the magnitude squared coherence based on canonical correlation analysis (CCA-MSC) and magnitude squared coherence based on reduced-rank canonical correlation analysis (RCCA-MSC), the proposed WCCA-MSC behaves better in the influence of noise and relative amplitude of frequency components and provides more accuracy at non-coherent frequencies. The application of the new method to EEG signals showed increased coherence in Delta and Theta frequency bands decreased coherence in an Alpha frequency band in aMCI patients. Considering its property of better performance, the proposed coherence method is of great advantage in analyzing the pathogenesis of aMCI with T2DM.
机译:2型糖尿病(T2DM)增加了轻度轻度认知障碍(aMCI)和阿尔茨海默氏病(AD)的风险。 aMCI是从正常认知到AD的过渡阶段,严重影响着人们的生活质量,特别是对老年人而言。脑电图(EEG)一致性可以评估不同大脑区域之间的功能连接性,这是研究aMCI发病机理并将aMCI患者与正常认知对象区分开的有效方法。在本文中,我们提出了一种基于加权典型相关分析(WCCA-MSC)的新的脑电波相干方法,称为量方平方相干,该方法通过加权提高了相干估计的准确性。与基于典范相关分析的幅度平方相干(CCA-MSC)和基于降秩典范相关分析的幅度平方相干(RCCA-MSC)相比,拟议的WCCA-MSC在噪声和相对幅度的影响下表现更好频率分量,并在非相干频率下提供更高的精度。新方法在脑电信号中的应用表明,aMCI患者的Delta和Theta频段的相干性增强,而Alpha频段的相干性降低。考虑到其性能更好的特点,所提出的相干方法在分析aMCI与T2DM的发病机理方面具有很大的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号